Last Time

- Adjacency List Implementation Details
 - Featuring many Iterators!
- More Fundamental Graph Properties
- An Important Algorithm: Minimum-cost spanning subgraph
Today’s Outline

• Finish up Prim’s Algorithm
• More Core Algorithms: Directed Graphs
 • Dijkstra’s Algorithm
 • Time permitting
 • Cycle Detection
 • Topological Sorting
Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here’s one idea:

Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- How close might this get us to the MCST?
Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum coloring.
Prim’s Algorithm

\(\text{prim}(G) \quad //\text{finds a MCST of connected } G=(V,E)\)

let \(v\) be a vertex of \(G\); set \(V_1 \leftarrow \{v\}\) and \(V_2 \leftarrow V - \{v\}\)

let \(A\) be the set of all edges between \(V_1\) and \(V_2\)

while (\(|V_1| < |V|\))

let \(e \leftarrow \text{cheapest edge in } A\) between \(V_1\) and \(V_2\)

add \(e\) to \(\text{MCST}\)

let \(u \leftarrow \text{the vertex of } e\) in \(V_2\)

move \(u\) from \(V_2\) to \(V_1\);

add to \(A\) all edges incident to \(u\)

// note: \(A\) now may have edges with both ends in \(V_1\)
Prim’s Algorithm (Variant)

• Note: If G is not connected, A will eventually be empty even though $|V_1| < |V|$.

• We fix this by
 • Replacing while($|V_1| < |V|$) with
 • while($|V_1| < |V|$) && $A \neq \emptyset$)
 • Replacing
 • until e is an edge between V_1 and V_2
 • with
 • until $A \neq \emptyset$ or e is an edge between V_1 and V_2

• Then Prim will find the MCST for the component containing v.
Prim’s Algorithm (Variant)

\(\text{prim}(G) \) // finds a MCST of connected \(G=(V,E) \)

let \(v \) be a vertex of \(G \); set \(V_1 \leftarrow \{v\} \) and \(V_2 \leftarrow V_1 - \{v\} \)

let \(A \leftarrow \emptyset \) // \(A \) will contain ALL edges between \(V_1 \) and \(V_2 \)

while \(|V_1| < |V| \) \&\& \(|A| > 0 \)

 add to \(A \) all edges incident to \(v \)

repeat

 remove cheapest edge \(e \) from \(A \)

until \(A \) is empty \(\mid \mid e \) is an edge between \(V_1 \) and \(V_2 \)

if \(e \) is an edge between \(V_1 \) and \(V_2 \)

 let \(v \leftarrow \text{the vertex of } e \text{ in } V_2 \)

 move \(v \) from \(V_2 \) to \(V_1 \);
Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges as “visited” in G
• We’ll “build” \(V_1 \) by marking its vertices visited
• How should we represent A?
 • What operations are important to A?
 • Add edges
 • Remove cheapest edge
 • A priority queue!
• When we remove an edge from A, check to ensure it has one end in each of \(V_1 \) and \(V_2 \)
ComparableEdge Class

- Values in a PriorityQueue need to implement Comparable
- We wrap edges of the PQ in a class called ComparableEdge
 - It requires the label used by graph edges to be of a Comparable type
Prim’s Algorithm (Variant)

`prim(G)` // finds a MCST of connected $G=(V,E)$

let v be a vertex of G; set $V_1 \leftarrow \{v\}$ and $V_2 \leftarrow V_1 - \{v\}$

let $A \leftarrow \emptyset$ // A will contain ALL edges between V_1 and V_2

while $|V_1| < |V| \land |A| > 0$

 add to A all edges incident to v

repeat

 remove cheapest edge e from A

until A is empty || e is an edge between V_1 and V_2

if e is an edge between V_1 and V_2

 let $v \leftarrow$ the vertex of e in V_2

 move v from V_2 to V_1;
PriorityQueue<ComparableEdge<String,Integer>> q =
 new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
MCST: The Code

do {
 // visit the vertex and add all outgoing edges
 g.visit(v);
 Iterator<String> ai = g.neighbors(v);
 while (ai.hasNext()) {
 // turn it into outgoing edge
 e = g.getEdge(v, ai.next());
 // add the edge to the queue
 q.add(new ComparableEdge<String, Integer>(e));
 }
 ...

MCST: The Code

```
searching = true;
while (searching && !q.isEmpty()) {
    // grab next shortest edge
    e = q.remove();
    // Is e between V_1 and V_2 (subtle code!!)
    v = e.there();
    if (g.isVisited(v)) v = e.here();
    if (!g.isVisited(v)) {
        searching = false;
        g.visitEdge(g.getEdge(e.here(),
                          e.there()));
    }
}
} while (!searching);
```
Prim : Space Complexity

- Graph: $O(|V| + |E|)$
 - Each vertex and edge uses a constant amount of space
- Priority Queue $O(|E|)$
 - Each edge takes up constant amount of space
- Every other object (including the neighbor iterator) uses a constant amount of space
- Result: $O(|V| + |E|)$
 - Optimal in Big-O sense!
Prim : Time Complexity

Assume Map ops are $O(1)$ time (not quite true!)

For each iteration of do ... while loop

- Add neighbors to queue: $O(\text{deg}(v) \log |E|)$
 - Iterator operations are $O(1)$ [Why?]
 - Adding an edge to the queue is $O(\log |E|)$
- Find next edge: $O(\text{# edges checked} \times \log |E|)$
 - Removing an edge from queue is $O(\log |E|)$ time
 - All other operations are $O(1)$ time
Prim : Time Complexity

Over *all* iterations of do ... while loop

Step I: Add neighbors to queue:

- For each vertex, it’s $O(\text{deg}(v) \log |E|)$ time
- Adding over all vertices gives

$$
\sum_{v \in V} \text{deg}(v) \log |E| = \log |E| \sum_{v \in V} \text{deg}(v) = \log |E| * 2|E|
$$

- which is $O(|E| \log |E|) = O(|E| \log |V|)$
 - $|E| \leq |V|^2$, so $\log |E| \leq \log |V|^2 = 2 \log |V| = O(\log |V|)$
Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: $O(\# \text{ edges checked} \times \log |E|)$

- Each edge is checked at most once
- Adding over all edges gives $O(|E| \log |E|)$ again

Thus, overall time complexity (worst case) of Prim’s Algorithm is $O(|E| \log |V|)$

- Typically written as $O(m \log n)$
 - Where $m = |E|$ and $n = |V|$
The Problem: Given a graph G and a starting vertex v, find, for each vertex u ≠ v reachable from v, a shortest path from v to u.

- The Single Source Shortest Paths Problem
- Arises in many contexts, including network communications
- Uses edge weights (but we’ll call them “lengths”): assume they are non-negative numbers
- Could be a directed or undirected graph
Single Source Shortest Paths

• We’ll look at directed graphs
 • So the paths must be directed paths
• Let’s think....
• Suppose we have a set shortest paths \(\{P_u : u \neq v\} \), where \(P_u \) is a shortest path from \(v \) to \(u \)
• Let \(H \) be the subgraph of \(G \) consisting of each vertex of \(G \) along with all of the edges in each \(P_u \)
• What can we say about \(H \)?
Single Source Shortest Paths

Observations

• If some vertex u has in-degree greater than 1, we can drop one of the incoming edges: Why?
 • Only the last edge of the shortest path from v-u is needed as an in-edge to u [Why?]
 • So we assume H has in-deg(u)=1 for all u≠v
 • We need no in-edges for v [Why?]

• H can’t have any directed cycles
 • Well, v can’t be on any cycles (in-deg(v) = 0)
 • If there were a cycle, some vertex on it would have in-degree > 1 [Why?]
Observations

• In fact, even disregarding edge directions, there would be no cycles
 • Some vertex would have in-degree at least 2
 • Or else there’s a directed cycle (Why?)
• So, we can assume that there is some set of shortest paths that forms a (directed) tree
• This suggests that we try again to
 Greedily grow a tree
• The question is: How?
The Right Kind of Greed

• Build a MCST?
 • No: It won’t always give shortest paths
• A start: take shortest edge from start vertex s
 • That must be a shortest path!
 • And now we have a small tree of shortest paths
• What next?
 • Design an algorithm thinking inductively
 • Suppose we have found a tree T_k that has shortest paths from s to the $k-1$ vertices “closest” to s
 • What vertex would we want to add next?
Finding the Best Vertex to Add to T_k

Not all edges are displayed

Question: Can we find the next closest vertex to s?
What’s a Good Greedy Choice?

Idea: Pick edge e from u in T_k to v in $G - T_k$ that minimizes the length of the tree path from s up to—and through—e

Now add v and e to T_k to get tree T_{k+1}

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s! [Proof?] Repeat until $k = |V|$
Some Notation Reminders

- \(l(e) \) : length (weight) of edge \(e \)
- \(d(u,v) \) : distance from \(u \) to \(v \)
 - Length of shortest path from \(u \) to \(v \)

- The priority queue stores an estimate of the distance from \(s \) to \(w \) by storing, for some edge \((v,w) \), \(d(s,v) + l(v,w) \)
 - The estimate is always an upper bound on \(d(s,w) \)
Dijkstra: What Do We Return?

- As we find a new vertex v to add to the tree of shortest paths, add edges $e=(v,w)$ to a map.

- Precisely:
 - Use the PQ association (X,Y) edgInfo where
 - X is $d(s,v) + l(v,w)$
 - Y is the edge $e=(v,w)$
 - Add the key/value pair $(w, \text{edgInfo})$ to the map

- So the map entry with key w tells us the edge the best path used to get from the tree to w
Dijkstra’s Algorithm

\[\text{Dijkstra}(G, s) \quad // \text{l}(e) \text{ is the length of edge } e \]

\[
\text{let } T \leftarrow (\{s\}, \emptyset) \text{ and PQ be an empty priority queue}
\]

for each neighbor \(v \) of \(s \), add edge \((s,v)\) to PQ with priority \(l(e)\)

while \(T \) doesn’t have all vertices of \(G \) and PQ is non-empty

repeat

\[e \leftarrow \text{PQ.removeMin()} \quad // \text{skip edges with both} \]

until PQ is empty or \(e=(u,v) \) for \(u \in T, v \notin T \) // ends in \(T \)

if \(e=(u,v) \) for \(u \in T, v \notin T \)

add \(e \) (and \(v \)) to \(T \)

for each neighbor \(w \) of \(v \)

add edge \((v,w)\) to PQ with weight/key \(d(s,v) + l(v,w)\)
Dijkstra's Algorithm
Priority Queue
Priority Queue

SF->Port; SF->Den; SF->Dal
500 1000 1500
Current: 500 SF->Port (need to add Port’s neighbors to PQ)

SF->Den; SF->Dal
1000 1500
Current: 500 SF->Port

- SF->Port->Sea: 600
- SF->Den: 1000
- SF->Dal: 1500
Current: 600 SF->Port->Sea

SF->Den; SF->Dal
1000 1500
Current: 600 SF->Port->Sea

SF->Den; SF->Dal; SF->Port->Sea->Bos
1000 1500 3400
Current: 1000 SF->Den

SF->Dal; SF->Port->Sea->Bos
1500 3400
Current: 1000 SF->Den

SF->Dal: 1500
SF->Den->Dal: 1700
SF->Den->Chi: 1900
SF->Port->Sea->Bos: 3400
Current: 1500 SF->Dal

- SF->Den->Dal; 1700
- SF->Den->Chi; 1900
- SF->Port->Sea->Bos; 3400
Current: 1500 SF->Dal

- SF->Den->Dal; 1700
- SF->Den->Chi; 1900
- SF->Dal->Atl; 2200
- SF->Dal->LA; 2700
- SF->Port->Sea->Bos; 3400
Current: 1700 SF->Den->Dal (we already have Dallas!)

SF->Den>Chi; SF->Dal>Atl; SF->Dal>LA; SF->Port>Sea->Bos
1900 2200 2700 3400
Current: 1900 SF→Den→Chi

SF→Dal→Atl; SF→Dal→LA; SF→Port→Sea→Bos
2200 2700 3400
Current: 1900 SF->Den->Chi

SF->Dal->Atl; 2200
SF->Den->Chi->Atl; 2500
SF->Dal->LA; 2700
SF->Port->Sea->Bos; 3400
Current: 2200 SF->Dal->Atl

SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400
Current: 2200 SF->Dal->Atl

SF->Den->Chi->Atl; SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos

2500 2700 3000 3400
Current: 2500 SF->Den->Chi->Atl

SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2700 3000 3400
Current: 2700 SF->Dal->LA

- SF->Dal->Atl->NY;
- SF->Port->Sea->Bos

3000

3400
Current: 3000 SF->Dal->Atl->NY

SF->Port->Sea->Bos
3400
Current: 3000 SF->Dal->Atl->NY

SF->Dal->Atl->NY->Bos; SF->Port->Sea->Bos

3200 3400
Current: 3200 SF->Dal->Atl->NY->Bos
SF->Port->Sea->Bos 3400
Current: 3400 SF->Port->Sea->Bos
Dijkstra: Space Complexity

• Graph: $O(|V| + |E|)$
 • Each vertex and edge uses a constant amount of space

• Priority Queue $O(|E|)$
 • Each edge takes up constant amount of space

• Are there any hidden space costs?

• Result: $O(|V| + |E|)$
 • Optimal in Big-O sense!
Dijkstra : Time Complexity

Assume Map ops are $O(1)$ time

Across all iterations of outer while loop

• Edges are added to and removed from the priority queue
 • But any edge is added (and removed) at most once!
 • Total PQ operation cost is $O(|E| \log |E|)$ time
 • Which is $O(|E| \log |V|)$ time
 • All other operations take constant time

• Thus time complexity is $O(|E| \log |V|)$