Last Time

- Greedy Algorithms for Optimization
- Lab 11: Exam Scheduling
- Adjacency List Implementation Details
Today’s Outline

• GraphList Time/Space Complexity
• An Important Algorithm: Minimum-cost spanning subgraph
• More Core Algorithms: Directed Graphs
 • Dijkstra’s Algorithm
 • Time permitting
 • Cycle Detection
 • Topological Sorting
Efficiency Revisited

• Assume Map operations are $O(1)$ (for now)
 • $|E| = \text{number of edges}$
 • $|V| = \text{number of vertices}$
• Runtime of add, addEdge, getEdge, removeEdge, remove?
• Space usage?
• Conclusions
 • Matrix is better for dense graphs
 • List is better for sparse graphs
 • For graphs “in the middle” there is no clear winner
Efficiency : Assuming Fast Map

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>GraphList</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>addEdge</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>getEdge</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>removeEdge</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>remove</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>space</td>
<td>$O(</td>
<td>V</td>
</tr>
</tbody>
</table>
Applications
Minimum-Cost Spanning Trees
Minimum-Cost Spanning Trees
Basic Graph Properties

- A *subgraph* of a graph $G=(V, E)$ is a graph $G’=(V’,E’)$ where
 - $V’ \subseteq V$
 - $E’ \subseteq E$, and
 - If $e \in E’$ where $e = \{u,v\}$, then $u, v \in V’$
- If $E’$ contains every edge of E having both ends in $V’$, then $G’$ is called the subgraph of G *induced by* $V’$
- If $V’ = V$, then $G’$ is called a *spanning subgraph of* G
Basic Graph Properties

- Recall: An undirected graph $G=(V,E)$ is connected if for every pair u,v in V, there is a path from u to v (and so from v to u).
- The maximal sized connected subgraphs of G are called its connected components.
 - Note: They are induced subgraphs of G.
- An undirected graph without cycles is a forest.
- A connected forest is called a tree.
 - Not to be confused with the data structure!
Facts About Graphs

Thm: If $G=(V,E)$ is a forest with $|E| > 0$, then G has at least one vertex v of degree 1 (a leaf)
 • Let’s prove this: Consider a longest simple path in G...

Thm: If $G=(V,E)$ is a tree then $|E| = |V| - 1$.
 • Hint: Induction on v: delete a leaf

Thm: Every connected graph $G=(V,E)$ contains a spanning subgraph $G’=(V,E’)$ that is a tree
 • That is, a spanning tree

Proof idea:
 • If G is not a tree, then it contains a cycle C
 • Removing an edge from C leaves G connected (why)
 • Repeat until no more cycles remain
Edge-Weighted Graphs

• An edge-weighting of a graph $G=(V,E)$ is an assignment of a number (weight) to each edge of G
 • We write the weight of e as $w(e)$ or w_e
• The weight $w(G')$ of any subgraph G' of G is the sum of the weights of the edges in G'
• We will focus on edge-weights that are non-negative, so if G' is a subgraph of G, then $w(G') \leq w(G)$
A Famous Problem

Given a connected, undirected graph $G=(V,E)$ with non-negative edge weights, find a minimum-weight, connected, spanning subgraph of G. Note: Such a subgraph must be a spanning tree!

Frequently, we refer to the edge weights as costs and so this problem becomes:

Given an undirected graph G with edge costs, compute a minimum-cost spanning tree of G.
Minimum-Cost Spanning Trees
Minimum-Cost Spanning Trees
Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here’s one idea:

Grow It Greedily!

• Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm
• How close might this get us to the MCST?
An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum schedule (coloring).

Why does this work?
The Key

Def: Sets V_1 and V_2 form a partition of a set V if

$$V_1 \cup V_2 = V \text{ and } V_1 \cap V_2 = \emptyset$$

Lemma: Let $G=(V,E)$ be a connected graph and let V_1 and V_2 be a partition of V. Every MCST of G contains a cheapest edge between V_1 and V_2

- Let e be a cheapest edge between V_1 and V_2
- Let T be a MCST of G. If $e \notin T$, then $T \cup \{e\}$ contains a cycle C and e is an edge of C
- Some other edge e' of C must also be between V_1 and V_2; e is a cheapest edge, so $w(e') = w(e)$ [Why?]
Using The Key to Prove Prim

We’ll assume all edge costs are distinct

Otherwise proof is slightly less elegant

Let T be a tree produced by the greedy algorithm and suppose T* is a MCST for G

Claim: $T = T^*$

Idea of Proof: Show that every edge added to the tree T by the greedy algorithm is in T^*

Clearly the first edge added to T is in T^*

Why? Use the key!
Using The Key

Now use induction!

• Suppose, for some \(k \geq 1 \), that the first \(k \) edges added to \(T \) are in \(T^* \). These form a tree \(T_k \)

• Let \(V_1 \) be the vertices of \(T_k \) and let \(V_2 = V - V_1 \)

• Now, the greedy algorithm will add to \(T \) the cheapest edge \(e \) between \(V_1 \) and \(V_2 \)

• But any MCST contains the (only!) cheapest edge between \(V_1 \) and \(V_2 \), so \(e \) is in \(T^* \)

• Thus the first \(k+1 \) edges of \(T \) are in \(T^* \)