CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Fall 2017
Instructor: Bills
Administrative Details

- Lab 9 today!
- You can work with a partner
- Bring a design to lab
- You can deviate from our suggestions but you should try to take advantage of
 - Abstract base classes/inheritance
 - Data structures you’ve learned
Last Time

- Finished array-based heaps
- Some heapsort observations
- Skew heaps
Today’s Outline

- Binary search trees (Ch 14)
 - Overview
 - Definition
 - Some Applications
 - The locate method
 - Further Implementation
 - Tree balancing to maintain small height
 - Partial taxonomy of balanced tree species
Search

• Some data structures we have discussed do not support searching:
 • Queue, Stack, PriorityQueue, Heap

• How fast can we search \(\text{get(E value)} \) in:
 • Array/Vector
 • \(O(n) \)
 • Linked List
 • \(O(n) \)
 • OrderedVector
 • \(O(\log n) \)
Improving on OrderedVector

• The OrderedVector class provides $O(\log n)$ time searching for a group of n comparable objects
 • add() and remove(), though, take $O(n)$ time in the worst case (and on average)
• Goal: improve update times without sacrificing the $O(\log n)$ search time
Binary Trees and Orders

• Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a natural way to hold comparable items
 • For each node v in tree
 • All values in left subtree of v are ≤ v
 • All values in right subtree of v are ≥ v

• This leads us to...
Binary Search Trees

• Binary search trees maintain a total ordering among elements

• Definition: A BST is either:
 • Empty
 • A tree where root value is greater than or equal to all values in left subtree, and less than or equal to all values in right subtree; left and right subtrees are also BSTs

• Examples:
 data = \{ 3, 9, 2, 4, 5, 5, 0, 6 \}
BST Observations

• The same data can be represented by many BST shapes

• Observations:
 • Searching for a value in a BST takes time proportional to the height of the tree
 • Additions to a BST happen at nodes missing at least one child
 • Removing from a BST can involve any node
BST Operations

• BSTs will implement the OrderedStructure Interface
 • add(E item)
 • contains(E item)
 • get(E item)
 • remove(E item)
 • Runtime of above operations?
 • All $O(h)$ – where h is the tree height
 • iterator()
 • This will provide an in-order traversal
BST Implementation

• The BST holds the following items
 • BinaryTree root: the root of the tree
 • BinaryTree EMPTY: a static empty BinaryTree
 • To use for all empty nodes of tree
 • int count: the number of nodes in the BST
 • Comparator<E> ordering: for comparing nodes
 • Note: E must implement Comparable

• Two constructors: One takes a Comparator
BST Implementation: locate

- Several methods search the tree:
 - add, remove, contains, ...
- We factor out common code: locate method
- protected locate(BinaryTree<E> node, E ν)
 - Returns a BinaryTree<E> n in the subtree whose root is node such that either
 - n has its value equal to ν, or
 - ν is not in this subtree and n is the node whose child ν should be
- How would we implement locate()?
BST Implementation: locate

`BinaryTree locate(BinaryTree root, E value)`

if root’s value equals value return root

child ← child of root that should hold value

if child is empty tree, return root

// value not in subtree based at root

else //keep looking

return locate(child, value)
BST Implementation: locate

• What about this line?

child ⇐ child of root that should hold value

• If the tree can have multiple nodes with same value, then we need to be careful

 • Convention: During add operation, only move to right subtree if value to be added is greater than value at node

• We’ll look at add later

• Let’s look at locate now....
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
 E rootValue = root.value();
 BinaryTree<E> child;

 // found at root: done
 if (rootValue.equals(value)) return root;

 // look left if less-than, right if greater-than
 if (ordering.compare(rootValue, value) < 0)
 child = root.right();
 else
 child = root.left();

 // no child there: not in tree, return this node,
 // else keep searching
 if (child.isEmpty()) return root;
 else
 return locate(child, value);
}
Other core BST methods

• \texttt{locate(v)} returns either a node containing \texttt{v} or a node where \texttt{v} can be added as a child

• \texttt{locate(E value)} is used by:
 • public boolean contains(E value)
 • public E get(E value)
 • public void add(E value)
 • Public void remove(E value)

• Some of these also use another utility method
 • protected BT predecessor(BT root)

• Let’s look at \texttt{contains()} first...
public boolean contains(E value) {
 if (root.isEmpty()) return false;

 BinaryTree<E> possibleLocation = locate(root, value);

 return value.equals(possibleLocation.value());
}
public void add(E value) {
 TreeNode newNode = new TreeNode(value, EMPTY, EMPTY);
 if (root.isEmpty()) root = newNode;
 else {
 TreeNode insertLocation = locate(root, value);
 E nodeValue = insertLocation.value();
 if (ordering.compare(nodeValue, value) < 0)
 insertLocation.setRight(newNode); // value > nodeValue
 else
 insertLocation.setLeft(newNode); // value <= nodeValue
 }
 count++;
}

Problem: If duplicate values are allowed in the BST, the left subtree might not be empty when setLeft is called
Add: Repeated Nodes

Where would a new K be added?
A new V?