Administrative Details

• Lab 9: Simulations
 • You will simulate two queuing strategies
 • You can work with a partner
 • Time spent on lab before Wed. is time well-spent!
Last Time

• Finishing up with heaps
 • More on implementation
 • “Heapifying” constructor for VectorHeap
 • Alternate heapify approach
Today

• Finishing up with heaps
 • HeapSort
 • Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
 • Definitions
 • Implementation
Heapifying A Vector (or array)

• Method I: Top-Down
 • Assume $V[0..k]$ satisfies the heap property
 • Now call percolate on item in location $k+1$
 • Then $V[0..k+1]$ satisfies the heap property

• Method II: Bottom-up
 • Assume $V[k..n]$ satisfies the heap property
 • Now call pushDown on item in location $k-1$
 • Then $V[k-1..n]$ satisfies heap property

• Check out the demos at visualgo.net
Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is at most

$$
\sum_{d=1}^{h} d2^d = (h - 1)2^{h+1} = (\log n - 1)2n + 2
$$

- This is $O(n \log n)$

- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $O(\log n)$ swaps per element
Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped $h-d$ times: Total # of swaps is at most

$$\sum_{d=1}^{h} (h-d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2$$

- This is $O(n)$ --- beats top-down!

- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!
Some Sums

\[\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1 \]

\[\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1} - 1)}{(r - 1)} \]

\[\sum_{d=1}^{d=k} d \cdot 2^d = (k - 1) \cdot 2^{k+1} + 2 \]

\[\sum_{d=1}^{d=k} (k - d) \cdot 2^d = 2^{k+1} - k - 2 \]

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any \(r \neq 0 \)
HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
 • Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 • Now repeatedly remove elements to fill in Vector from tail to head
 • For(int i = v.size() – 1; i > 0; i--)
 – RemoveMin from v[0..i] // v[i] is now not in heap
 – Put removed value in location v[i]
Heap Sort vs QuickSort

- Time (ms) vs Size
- Heap Sort
- Quick Sort
Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
 • Guaranteed O(n log n) runtime
• Works well on mostly sorted data, unlike quicksort
• Good for incremental sorting
More on Heaps

- Set-up: We want to build a *large* heap. We have several processors available.
- We’d like to use them to build smaller heaps and then merge them together.
- Suppose we can share the array holding the elements among the processors.
 - How long to merge two heaps?
 - How complicated is it?
- What if we use BinaryTrees for our heaps?
Mergeable Heaps

• We now want to support the additional *destructive* operation merge(heap1, heap2)

• Basic idea: heap with larger root somehow points into heap with smaller root

• Challenges
 • Points how? Where?
 • How much reheapifying is needed
 • How deep do trees get after many merges?
Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps tree shallow over time
• Theorem: Any set of m SkewHeap operations can be performed in O(m log n) time, where n is the total number of items in the SkewHeaps
• Let’s sketch out merge operation....
Skew Heap: Merge Pseudocode

\(\text{SkewHeap merge}(\text{SkewHeap } S, \text{SkewHeap } T) \)

if either \(S \) or \(T \) is empty, return the other

if \(T.\text{minValue} < S.\text{minValue} \)

\(\text{swap } S \text{ and } T \) \hspace{1cm} (S now has minValue)

if \(S \) has no left subtree, \(T \) becomes its left subtree

else

let temp point to right subtree of \(S \)
left subtree of \(S \) becomes right subtree of \(S \)
merge(temp, \(T \)) becomes left subtree of \(S \)

return \(S \)
Tree Summary

• Trees
 • Express hierarchical relationships
 • Level ordering captures the relationship
 • i.e., ancestry, game boards, decisions, etc.

• Heap
 • Partially ordered tree based on item priority
 • Node invariants: parent has higher priority than each child
 • Provides efficient PriorityQueue implementation
Improving on OrderedVector

• The OrderedVector class provides $O(\log n)$ time searching for a group of n comparable objects
 • add() and remove(), though, take $O(n)$ time in the worst case---and on average!
• Can we improve on those running times without sacrificing the $O(\log n)$ search time?
• Let’s find out....
Binary Trees and Orders

• Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a natural way to hold comparable items
 • For each node v in tree
 • All values in left subtree of v are $\leq v$
 • All values in right subtree of v are $\geq v$

• This leads us to...
Binary Search Trees

- Binary search trees maintain a *total* ordering among elements

- Definition: A BST T is either:
 - Empty
 - Has root r with subtrees T_L and T_R such that
 - All nodes in T_L have smaller value than r
 - All nodes in T_R have larger value than r
 - T_L and T_R are also BSTs

- Examples
BST Observations

- The same data can be represented by many BST shapes
- Searching for a value in a BST takes time proportional to the height of the tree
 - Reminder: trees have height, nodes have depth
- Additions to a BST happen at nodes missing at least one child (a constraint!)
- Removing from a BST can involve any node
BST Operations

- BSTs will implement the OrderedStructure Interface
 - add(E item)
 - contains(E item)
 - get(E item)
 - remove(E item)
 - iterator()
 - This will provide an in-order traversal

- Runtime of add, contains, get, remove: \(O(\text{height}) \)

- Goal: Keep the height to \(O(\log n) \)
 - Duane’s BinarySearchTree class doesn’t achieve this…
 - But his RedBlackSearchTree does!
Application: Dictionary

- Create a BST of ComparableAssociations
 - Order BST by key
 - Two objects are equal if keys are equal

- Example: Symbol tables (PostScript lab) are Dictionaries
 - But would only use a BST if the set of possible symbols was very large
Application: Tree Sort

• Can we sort data using a BST?
 • Yes!

• Runtime?
 • To build a tree with n elements, we do n insertions: $O(n^\ast h)$, where h is the maximum height attained by the tree
 • In order traversal: $O(n)$
 • Total runtime: $O(n^\ast h)$