CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Fall 2016
Instructor: Bill Lenhart
Administrative Details

- Lab 9: Simulations
 - You will simulate two queuing strategies
 - You can work with a partner
 - Time spent on lab before Wed. is time well-spent!
Last Time

- Finishing up with heaps
 - More on implementation
 - “Heapifying” constructor for VectorHeap
 - Alternate heapify approach
Today

• Finishing up with heaps
 • Review “Heapify” (rushed at end of last lecture)
 • HeapSort
 • Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
 • Definitions
 • Implementation
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

• Method I: Top-Down
 • Assume V[0...k] satisfies the heap property
 • Now call percolateUp on item in location k+1
 • Then V[0..k+1] satisfies the heap property

Grow heap one element at a time
Practice Top-Down

Input:

• int a[6] = {7,5,9,1,2,5,4}

 0 1 2 3 4 5 6

 for (int i = 0; i < a.length; i++)
 percolateUp(a, i);

Result: a is a valid heap!

• a = [1|2|4|7|5|9|5]

 0 1 2 3 4 5 6
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

• Method II: Bottom-up
 • Assume V[k..n] satisfies the heap property
 • Now call pushDown on item in location k-1
 • Then V[k-1..n] satisfies heap property

Grow heap one element at a time
Practice Bottom-Up

Input:

- \(\text{int } a[6] = \{7,5,9,1,2,5,4\} \)

 \[
 \begin{array}{ccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 for (int i = a.length-1; i > 0; i++)
 pushDownRoot(a, i);

Result: a is a valid heap!

- \(a = [1\mid 2\mid 4\mid 5\mid 7\mid 5\mid 9] \)

 \[
 \begin{array}{ccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]
Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times. Total # of swaps is

$$\sum_{d=1}^{h} d2^d = (h - 1)2^{h+1} = (\log n - 1)2n + 2$$

(recall: $h = \log n$)

- This is $O(n \log n)$

- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $O(\log n)$ swaps per element
Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth \(d \) may be swapped \(h-d \) times: Total # of swaps is

\[
\sum_{d=1}^{h} (h - d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2
\]

• This is \(O(n) \) --- beats top-down!

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!
Some Sums (for your toolbox)

\[\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1 \]

\[\sum_{d=0}^{d=k} r^d = \frac{r^{k+1} - 1}{r - 1} \]

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any \(r \neq 0 \)
HeapSort

• The “niftiest” sort so far

• Strategy:
 • Make a *max-heap*: array[0…n]
 • array[0] is largest value
 • array[n] is rightmost leaf
 • Take the largest value (array[0]) and swap it with the rightmost leaf (array[n])
 • Call pushDownRoot(0) on array[0…n-1]
 • Now our heap is one element smaller, but largest element is at end of array.
 • Repeat until array is sorted
HeapSort

• Another $O(n \log n)$ sort method
• Heapsort is not *stable*
 • The relative ordering of elements is not preserved in the final sort
 • Why?
 – There are multiple valid heaps given the same data
• Heapsort can be done *in-place*
 • No extra memory required!!!
 • Great for resource-constrained environments
HeapSort

- HeapSort pseudocode for unsorted vector V:
 - Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 - Repeatedly remove elements to fill in Vector from tail to head
 - for(int i = v.size() – 1; i > 0; i--)
 - removeMin from v[0..i] // v[i] is now not in heap
 - Put removed value in location v[i] // v[0..i-1] is a valid heap
 // v[i..n] is sorted
Heap Sort vs QuickSort

The graph compares the performance of Heap Sort and Quick Sort based on time (in milliseconds) and size of the dataset. The y-axis represents time in milliseconds, while the x-axis represents the size of the dataset. The graph shows that as the size of the dataset increases, both Heap Sort and Quick Sort take more time, but Quick Sort consistently outperforms Heap Sort.
Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
 • Guaranteed $O(n \log n)$ runtime
• Works well on mostly sorted data, unlike quicksort
• Good for incremental sorting
More on Heaps

- Set-up: We want to build a large heap. We have several processors available.
- We’d like to use them to build smaller heaps and then merge them together.
- Suppose we can share the array holding the elements among the processors.
 - How long to merge two heaps?
 - How complicated is it?
- What if we use BinaryTrees for our heaps?
Mergeable Heaps

• We now want to support the additional *destructive* operation merge(heap1, heap2)
• Basic idea: heap with larger root somehow points into heap with smaller root
• Challenges
 • Points how? Where?
 • How much reheapifying is needed
 • How deep do trees get after many merges?
Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps tree shallow over time
• Theorem: Any set of m SkewHeap operations can be performed in $O(m \log n)$ time, where n is the total number of items in the SkewHeaps
• Let’s sketch out merge operation....
Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)

if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T
(S now has minValue)

if S has no left subtree, T becomes its left subtree

else

let temp point to right subtree of S

left subtree of S becomes right subtree of S

merge(temp, T) becomes left subtree of S

return S

Case 1

Case 2

Case 3

(recurse)
Tree Summary

• Trees
 • Express hierarchical relationships
 • Level ordering captures the relationship
 • i.e., ancestry, game boards, decisions, etc.

• Heap
 • Partially ordered tree based on item priority
 • Node invariants: parent has higher priority than each child
 • Provides efficient PriorityQueue implementation