CSCI 136
Data Structures & Advanced Programming

Lecture 22
Fall 2017
Instructor: Bills
Announcement

Power outage (3-5am)

We’ll be shutting down systems at 10pm tonight

Rebooting at 9am tomorrow
Last Time

- Wrap up Binary Tree Iterators
- Breadth-First and Depth-First Search
- Array Representations of (Binary) Trees
- Application: Huffman Encoding
Today

Improving Huffman’s Algorithm

• Priority Queues & Heaps
 • A “somewhat-ordered” data structure
 • Conceptual structure
 • Efficient implementations
The Encoding Tree

Left = 0; Right = 1
Recall: Huffman Encoding Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct (sorted) location in Vector
- Running Time:
 - $O(n \log n)$ for initial sorting
 - $O(n^2)$ for rest: $O(n)$ for each re-insertion
- Can we do better...?
What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - $\text{add}(E \text{ item});$ // add an item
 - $E \text{ removeMin}();$ // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in $O(\log n)$ time, the Huffman while loop would take $O(n \log n)$ time instead of $O(n^2)$!
- We’ve seen this situation before….
 Packet Sources May Be Ordered by Sender

- sysnet.cs.williams.edu: priority = 1 (best)
- bull.cs.williams.edu: 2
- yahoo.com: 10
- spammer.com: 100 (worst)
Priority Queues

- Priority queues are also used for:
 - Scheduling processes in an operating system
 - Priority is function of time lost + process priority
 - Order services on server
 - Backup is low priority, so don’t do when high priority tasks need to happen
 - Scheduling future events in a simulation
 - Medical waiting room
 - Huffman codes - order by tree root “frequency”
 - A variety of graph/network algorithms
 - To roughly rank choices that are generated out of order
Priority Queues

- Name is misleading: They are **not FIFO**
- Always dequeue object with **highest priority** (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values
An Apology

• On behalf of computer scientists everywhere, I’d like to apologize for the confusion that inevitably results from the fact that
 Higher Priority \leftrightarrow Lower Rank

• The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We’re sorry!
PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
 public E getFirst(); // peeks at minimum element
 public E remove(); // removes minimum element
 public void add(E value); // adds an element
 public boolean isEmpty();
 public int size();
 public void clear();
}
Notes on PQ Interface

• Unlike previous structures, we do not extend any other interfaces
 • Many reasons: For example, it’s not clear that there’s an obvious iteration order
• PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 • Could be made to use Comparators instead…
Implementing PQs

- **Queue?**
 - Wouldn’t work so well because we can’t insert and remove in the “right” way (i.e., keeping things ordered)

- **OrderedVector?**
 - Keep ordered vector of objects
 - $O(n)$ to add/remove from vector
 - Details in book…
 - Can we do better than $O(n)$?

- **Heap!**
 - Partially ordered binary tree
Heap

• A heap is a special type of tree
 • Root holds smallest (highest priority) value
 • Subtrees are also heaps (this is important!)
• So values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
• Invariant for nodes: For each child of each node
 • node.value() \leq \text{child.value()} \quad // \text{if child exists}
• Several valid heaps for same data set (no unique representation)
Inserting into a PQ

- Add new value as a leaf
- “Percolate” it up the tree
 - while (value < parent’s value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Tree height
Removing From a PQ

- Find a leaf, delete it, put its data in the root
- “Push” data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of smallest child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree
Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
- Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2
Implementing Heaps

• **Features**
 • No gaps in array (array is *complete*)-- why?
 • We always add in next available array slot (left-most available spot in binary tree;
 • We always remove using “final” leaf
 • *Heap Invariant becomes*
 • data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)
 • When elements are added and removed, do small amount of work to “re-heapify”
 • How small? Note: finding a node’s child or parent takes constant time, as does finding “final” leaf or next slot for adding
 • Since this heap corresponds to a full binary tree, the depth of the tree is $O(\log n)$, so percolate/pushDown takes $O(\log n)$ time!
VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both $O(\log n)$
• Data is not completely sorted
 • “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
 • Takes an unordered Vector and uses it to construct a heap
 • How?
Heapifying A Vector (or array)

- **Method I: Top-Down**
 - Assume $V[0..k]$ satisfies the heap property
 - Now call percolate on item in location $k+1$
 - Then $V[0..k+1]$ satisfies the heap property

- **Method II: Bottom-up**
 - Assume $V[k..n]$ satisfies the heap property
 - Now call pushDown on item in location $k-1$
 - Then $V[k-1..n]$ satisfies heap property
Top-Down vs Bottom-Up

• Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is

\[\sum_{d=1}^{h} d 2^d = (h - 1)2^{h+1} = (\log n - 1)2n + 2 \]

• This is \(O(n \log n) \)

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: \(O(\log n) \) swaps per element
Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth \(d \) may be swapped \(h - d \) times: Total # of swaps is

\[
\sum_{d=1}^{h} (h - d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2
\]

- This is \(O(n) \) --- beats top-down!

- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times \(\text{SO COOL}!!! \)
Some Sums

\[\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1 \]

\[\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1} - 1)}{(r - 1)} \]

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any \(r \neq 0 \)

\[\sum_{d=1}^{d=k} d \cdot 2^d = (k - 1) \cdot 2^{k+1} + 2 \]

\[\sum_{d=1}^{d=k} (k - d) \cdot 2^d = 2^{k+1} - k - 2 \]
HeapSort

• Heaps yield another $O(n \log n)$ sort method
• To HeapSort a Vector “in place”
 • Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 • Now repeatedly remove elements to fill in Vector from tail to head
 • For(int $i = v.size() - 1; i > 0; i--$)
 – RemoveMin from $v[0..i]$ // $v[i]$ is now not in heap
 – Put removed value in location $v[i]$
Skew Heap

• What if heaps are not complete BTs?
• We can implement PQs using skew heaps instead of “regular” complete heaps

Key differences:

• Rather than use Vector as underlying data structure, use BT
• Need a merge operation that merges two heaps together into one heap

• Details in book