CSCI 136
Data Structures & Advanced Programming

Lecture 22
Fall 2017
Instructor: Bills
Announcement

Power outage (3-5am)

We’ll be shutting down systems at 10pm tonight

Rebooting at 9am tomorrow
Last Time

• Wrap up Binary Tree Iterators
• Breadth-First and Depth-First Search
• Array Representations of (Binary) Trees
• Application: Huffman Encoding
Today

Improving Huffman’s Algorithm

• Priority Queues & Heaps
 • A “somewhat-ordered” data structure
 • Conceptual structure
 • Efficient implementations
Huffman Codes

Example

- AN_ANTARCTIC_PENGUIN
- Compute letter frequencies

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>I</th>
<th>N</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>_</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Key Idea: Use fewer bits for most common letters

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>I</th>
<th>N</th>
<th>P</th>
<th>R</th>
<th>T</th>
<th>U</th>
<th>_</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>1011</td>
<td>1000</td>
<td>000</td>
<td>001</td>
<td>1001</td>
<td>1010</td>
<td>0101</td>
<td>0100</td>
<td>011</td>
</tr>
</tbody>
</table>

Uses 67 bits to encode entire string
The Encoding Tree

Left = 0; Right = 1
Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies

• Huffman encode as follows
 • Create a single-node tree for each symbol: key is frequency; weight is letter
 • while there is more than one tree
 • Find two trees T1 and T2 with lowest weights
 • Merge them into new tree T with:
 weight = T1.weight + T2.weight

• Theorem: The tree computed by Huffman is an optimal encoding for given frequencies
Demo

- To run the Huffman code demo found on course webpage:

  ```java
  java -jar huffman.jar
  ```
The Encoding Tree (With Weights)

*Each node’s value is the sum of the frequencies of all its children

Left = 0; Right = 1
Implementing the Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
 - $O(n \log n)$ for initial sorting
 - $O(n^2)$ for while loop
- Can we do better...?
What Huffman Encoder Needs

• A structure S to hold items with priorities
• S should support operations
 • add(E item); // add an item
 • E removeMin(); // remove min priority item
• S should be designed to make these two operations fast
• If, say, they both ran in O(log n) time, the Huffman while loop would take O(n log n) time instead of O(n^2)!
• We’ve seen this situation before....
Priority Queues

Packet Sources May Be Ordered by Sender

- sysnet.cs.williams.edu priority = 1 (best)
- bull.cs.williams.edu 2
- yahoo.com 10
- spammer.com 100 (worst)
Priority Queues

- Priority queues are also used for:
 - Scheduling processes in an operating system
 - Priority is function of time lost + process priority
 - Order services on server
 - Backup is low priority, so don’t do when high priority tasks need to happen
 - Scheduling future events in a simulation (lab next week!)
 - Medical waiting room
 - Huffman codes - order by tree size/weight
 - A variety of graph/network algorithms
 - To roughly rank choices that are generated out of order
Priority Queues

- Name is misleading: They are **not FIFO**
- Always dequeue object with **highest priority** (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values
An Apology

• On behalf of computer scientists everywhere, I’d like to apologize for the confusion that inevitably results from the fact that
 Higher Priority \leftrightarrow Lower Rank

• The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We’re sorry!
public interface PriorityQueue<E extends Comparable<E>> {
 public E getFirst(); // peeks at minimum element
 public E remove(); // removes minimum element
 public void add(E value); // adds an element
 public boolean isEmpty();
 public int size();
 public void clear();
}
Notes on PQ Interface

• Unlike previous structures, we do not extend any other interfaces
 • Many reasons: For example, it’s not clear that there’s an obvious iteration order

• PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 • Could be made to use Comparators instead…
Implementing PQs

- Queue?
 - Wouldn’t work so well because we can’t insert and remove in the “right” way (i.e., keeping things ordered)

- OrderedVector?
 - Keep ordered vector of objects
 - $O(n)$ to add/remove from vector
 - Details in book…
 - Can we do better than $O(n)$?

- Heap!
 - Partially ordered binary tree
Heap

• A heap is a special type of tree
 • Root holds smallest (highest priority) value
 • Subtrees are also heaps (this is important!)
• Values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
• *Invariant for nodes:* For each child of each node
 • `node.value() <= child.value()` // if child exists
• Several valid heaps for same data set (no unique representation)
Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
 • while (value < parent’s value) swap with parent
• This operation preserves the heap property since new value was the only one violating heap property
• Efficiency depends upon speed of
 • Finding a place to add new node
 • Finding parent
 • Tree height
Removing From a PQ

- Get value from root node (highest priority)
- Find a leaf, delete it, put its data in the root
- “Push” data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of smaller child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree
Implementing Heaps

• VectorHeap
 • Use conceptual array representation of BT (ArrayTree)
 • But use extensible Vector instead of array (makes adding elements easier)
• Note:
 • Root of tree is location 0 of Vector
 • Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 • Parent of node i is in location (i-1)/2
 – Remember: dividing Integers truncates the result
Implementing Heaps

- Strategy: tree modifications that always preserve tree completeness, but may violate heap property. Then fix.
 - Add/remove never add gaps to array
 - We always add in next available array slot (left-most available spot in binary tree)
 - We always remove using “final” leaf
- Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)
- When elements are added and removed, do small amount of work to “re-heapify”
 - How small? Note: finding a node’s child or parent takes constant time, as does finding “final” leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so percolate/pushDown takes O(log n) time!
VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both $O(\log n)$
• Data is not completely sorted
 • “Partial” order is maintained: all root-to-leaf paths

• Note: VectorHeap(Vector<E> v)
 • Takes an unordered Vector and uses it to construct a heap
 • How?
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

• Method I: Top-Down
 • Assume V[0...k] satisfies the heap property
 • Now call percolateUp on item in location k+1
 • Then V[0..k+1] satisfies the heap property
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

- **Method II: Bottom-up**
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-1
 - Then V[k-1..n] satisfies heap property

Grow heap one element at a time
Top-Down vs Bottom-Up

• Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is

$$\sum_{d=1}^{h} d2^d = (h - 1)2^{h+1} = (\log n - 1)2n + 2$$

(recall: $h = \log n$)

• This is $O(n \log n)$

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $O(\log n)$ swaps per element
Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be swapped $h-d$ times: Total # of swaps is

$$\sum_{d=1}^{h} (h - d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2$$

• This is $O(n)$ --- beats top-down!

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times — SO COOL!!!
Some Sums (for your toolbox)

\[\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1\]

\[\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1} - 1)}{(r - 1)}\]

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any \(r \neq 0\)

\[\sum_{d=1}^{d=k} d \cdot 2^d = (k - 1) \cdot 2^{k+1} + 2\]

\[\sum_{d=1}^{d=k} (k - d) \cdot 2^d = 2^{k+1} - k - 2\]