CSCI 136
Data Structures &
Advanced Programming

Lecture 11
Fall 2017
Instructors: Bills
Administrative Details

• Lab 4 will be available online this afternoon
 • Partner? Submit 1 folder

• Problem Set 1 due Thursday by 11:00pm
 • In Instructor cubby outside of TCL 303
Last Time

• Comparing Complexity of List Operations on Vectors and Linked Lists
• Recursion and Induction
Today’s Outline

• More about Mathematical Induction
 • For algorithm run-time and correctness
• More About Recursion
 • Recursion on arrays; helper methods
 • Recursion on Chains
• Strong Induction
• Linear and Binary Searching review
Mathematical Induction

Principle of Mathematical Induction (Weak)

Let P(0), P(1), P(2), ... be a sequence of statements, each of which could be either true or false. Suppose that

1. P(0) is true, and
2. For all n ≥ 0, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as

2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!
Principle of Mathematical Induction (Weak)

Let $P(0), P(1), P(2), \ldots$ be a sequence of statements, each of which could be either true or false.

- Show that Base Case $P(0)$ is true
- Show that for any $n \geq 0$
 - If $P(n)$ is true (Induction Hypothesis)
 - Then $P(n+1)$ must be true (Induction Step)

If this can be shown, then each $P(n)$ ($n \geq 0$) is true
Mathematical Induction

- Prove: \(\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \)

- Prove: \(0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2 \)
Proof: \[0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2 \]

Base case: \(n = 0 \)
- LHS: \(0^3 = 0 \)
- RHS: \((0)^2 = 0 \) \(\surd \)

Induction Hypothesis: Assume that for some \(n > 0 \),
\[0^3 + 1^3 + \ldots + (n - 1)^3 = (0 + 1 + \ldots + (n - 1))^2 \]

Induction Step: Show that
\[0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2 \]
Proof: \(0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2\)

Note: I’m just doing the induction step: n-1 \(\rightarrow\) n version

\[
0^3 + 1^3 + \ldots + n^3 = (0^3 + 1^3 + \ldots + (n - 1)^3 + n^3) \\
\text{Induction} = (0 + 1 + \ldots + (n - 1))^2 + n^3 \\
\text{Algebra} = \left(\frac{(n - 1)n}{2}\right)^2 + n^3 \\
= n^2 \left(\frac{(n - 1)^2 + 4n}{4}\right) \\
= n^2 \left(\frac{n^2 + 2n + 1}{4}\right) \\
= n^2 \left(\frac{(n + 1)^2}{4}\right) \\
= \left(\frac{n(n + 1)}{2}\right)^2 \\
= (0 + 1 + \ldots + n)^2
\]
Form of Induction Proof

We don’t have to start at \(n = 0 \)!

Principle of Mathematical Induction (Weak)

Let \(P(k), P(k+1), P(k+2), \ldots \) be a sequence of statements, each of which could be either true or false.

- Show that Base Case \(P(k) \) is true
- Show that for any \(n \geq k \)
 - If \(P(n) \) is true (Induction Hypothesis)
 - Then \(P(n+1) \) must be true (Induction Step)

If this can be shown, then each \(P(n) \) \((n \geq k)\) is true
Examples (Try These at Home!)

Show that the angles of any n-sided polygon add up to $\pi(n - 2)$.

Note: $n \geq 3$, so base case is $n=3$

Show that if there are at least 6 people at a party, then either there are 3 mutual acquaintances or three mutual strangers.

Base case is $n = 6$

The induction step should be trivial!
What about Recursion?

• What does induction have to do with recursion?
 • Same form!
 • Base case
 • Inductive case that uses simpler form of problem

• Example: factorial
 • Prove that fact(n) requires n multiplications
 • Base case: n = 0 returns 1, so 0 multiplications
 • Assume for some n ≥ 0 that fact(n) requires n multiplications.
 • fact(n+1) performs one multiplication: (n+1)*fact(n).
 • We know that fact(n) requires n multiplications.
 • So fact(n+1) requires (exactly) n+1 multiplications.
Recursive contains() for Vector

public boolean contains(E elt) {
 return contains(elt, 0, size()-1); }

// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
 if (from > to)
 return false; // Base case: empty range
 else
 return elt.equals(elementData[from]) || contains(elt, from+1, to);
}

• What’s the time complexity of contains?
 • $O(to - from + 1) = O(n)$ (n is the portion of the array searched)
 • Prove by induction on n
• Often recursive methods on arrays use helper methods
 • They pass a pair of indices as parameters
Design Decision: Chains vs Nodes

• SLL and DLL used a simple Node model
• We could push more of the work down to the “Node” level
• A Chain object contains a value and a reference to “the rest of the chain”
• We can now implement many methods recursively and elegantly
• Uses a “dummy” node for empty chain
 • So an empty Chain is not a null value
• Let’s look at some code....
A Proof About Chains

Prove: deleteDuplicates() is correct

- **Base Case:** \(n = 0 \): Empty List is returned ✔
- **Induction Hypothesis:** For some \(n \geq 0 \), the method is correct
- **Induction Step:** Show it is correct for \(n+1 \)

  ```java
  Chain<E> result = rest.deleteDuplicates();
  if(rest.contains(value)) return result;
  else return new Chain<E>(value, result);
  ```

- By I.H. result is rest without duplicates
- If statement only includes (first) value if it is not a duplicate of something in rest. ✔
Counting Method Calls

- **Example: Fibonacci**
 - Prove that for \(n \geq 0 \) fib\((n)\) makes at least \(F_n \) calls to fib(), where \(F_n \) is the \(n^{th} \) Fibonacci number
 - Base cases: \(n = 0 \): 1 call; \(n = 1 \): 1 call
 - Assume that for some \(n \geq 2 \), fib\((n-1)\) makes at least \(F_{n-1} \) calls to fib() and fib\((n-2)\) makes at least \(F_{n-2} \) calls to fib().
 - Claim: Then fib\((n)\) makes at least \(F_n \) calls to fib()
 - 1 initial call: fib\((n)\)
 - By induction: At least fib\((n-1)\) calls for fib\((n-1)\)
 - And as least fib\((n-2)\) calls for fib\((n-2)\)
 - Total: \(1 + \text{fib}(n-1) + \text{fib}(n-2) > \text{fib}(n-1) + \text{fib}(n-2) = \text{fib}(n) \) calls

- **Note: Need two base cases!**
 - One can show by induction that for \(n > 10 \): fib\((n)\) > \((1.5)^n\)
 - Thus the number of calls grows exponentially!
Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

Let P_0, P_1, P_2, \ldots be a sequence of statements, each of which could be either true or false. Suppose that

1. P_0 and P_1 are true, and
2. For all $n \geq 2$, if P_{n-1} and P_{n-2} are true, then so is P_n.

Then all of the statements are true!

Other versions:

- Can have $k > 2$ base cases
- Doesn’t need to start at 0
Example: Binary Search

• Given an array a[] of positive integers in increasing order, and an integer x, find location of x in a[].
 • Take “indexOf” approach: return -1 if x is not in a[]

```java
protected static int recBinarySearch(int a[], int value, int low, int high) {
    if (low > high) return -1;
    else {
        int mid = (low + high) / 2; //find midpoint
        if (a[mid] == value) return mid; //first comparison
        //second comparison
        else if (a[mid] < value) //search upper half
            return recBinarySearch(a, value, mid + 1, high);
        else //search lower half
            return recBinarySearch(a, value, low, mid - 1);
    }
}
```
Can we use induction to prove the following?

- **Claim:** If \(n = \text{high} - \text{low} + 1 \), then \(\text{recBinSearch} \) performs at most \(c \cdot (1 + \log n) \) operations, where \(c \) is twice the number of statements in \(\text{recBinSearch} \).

- **Base case:** \(n = 1 \): Then \(\text{low} = \text{high} \) so only \(c \) statements execute (method runs twice) and \(c \leq c(1 + \log 1) \).

- **Assume** that claim holds for some \(n \geq 1 \), does it hold for \(n+1 \)? [Note: \(n+1 > 1 \), so \(\text{low} < \text{high} \)].

- **Problem:** Recursive call is not on \(n \)---it’s on \(n/2 \).

- **Solution:** We need a better version of the PMI….
Strong Mathematical Induction

Principle of Mathematical Induction (Strong)

Let $P(0), P(1), P(2), \ldots$ be a sequence of statements, each of which could be either true or false. Suppose that, for some $a \geq 0$

1. $P(0), P(1), \ldots, P(a)$ are true, and

2. For every $n \geq a$, if $P(1), P(2), \ldots, P(n)$ are true, then so is $P(n+1)$.

Then all of the statements are true!
Form of Strong Induction Proof

Principle of Mathematical Induction (Strong)

Let $P(0), P(1), P(2), \ldots$ be a sequence of statements, each of which could be either true or false.

- Show that Base Cases $P(0), P(1), \ldots P(a)$ are true
- Show that for any $n \geq a$
 - If $P(0), P(1), \ldots P(n)$ are true (Induction Hypothesis)
 - Then $P(n+1)$ must be true (Induction Step)

If this can be shown, then each $P(n)$ ($n \geq 0$) is true
Try again now:

- Assume that for some \(n \geq 1 \), the claim holds for all \(k \leq n \), does claim hold for \(n+1 \)?

- Yes! Either
 - \(x = a[mid] \), so a constant number of operations are performed, or
 - \(\text{RecBinSearch} \) is called on a sub-array of size \(n/2 \), and by induction, at most \(c(1 + \log (n/2)) \) operations are performed.

- This gives a total of at most \(c + c(1 + \log(n/2)) = c + c(\log(2) + \log(n/2)) = c + c(\log n) = c(1 + \log n) \) statements