Administrative Details

- First Problem Set is online
- Due by 11:00 pm Thursday night
 - Drop it off in your instructor’s CS mailbox outside of TCL 303
 - If next Friday is NOT Mountain Day, you can bring it to class instead!
Last Time

• Measuring Growth
 • Big-O
Today

- Applying $O()$ to Compute Complexity
- Recursion
- Mathematical Induction (Weak)
- Recursion on Chains
- Mathematical Induction (Strong)
Input-dependent Running Times

• Algorithms may have different running times for different inputs of a given size
• Best case (typically not useful)
 • Find item in first place that we look $O(1)$
• Worst case (generally useful, sometimes misleading)
 • Don’t find item in list $O(n)$
• Average case (useful, but often hard to compute)
 • Linear search $O(n)$
Vectors vs. SLL

• Compare runtime of
 • size
 • addLast, removeLast, getLast
 • addFirst, removeFirst, getFirst
 • get(int index), set(E d, int index)
 • remove(int index)
 • contains(E d)
 • remove(E d)
List Operations : Worst-Case

For a singly-linked list of n items

- **O(1)**: size(), isEmpty(), firstElement()
 - lastElement() (if the list has a tail reference)
- **O(n)**: get(i), set(i), indexOf(), contains(), remove(elt), remove(i)
 - lastElement() (if the list doesn’t have a tail reference)
- What about add/remove methods?
 - **O(1)**: addFirst(), removeFirst()
 - **O(n)**: add(i), add()/addLast(), remove(i)/remove()/removeLast()

For a doubly-linked list, adding/removing from the tail becomes **O(1)**
Vector Operations: Worst-Case

For n = Vector size (not capacity!):

- **O(1):** size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- **O(n):** indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
 - If Vector doesn’t need to grow
 - add(elt) is O(1) but add(elt, i) is O(n)
 - Otherwise, depends on ensureCapacity() time
 - Time to compute newLength : O(\log_2(n))
 - If doubling; otherwise could be O(n) : n is new array size
 - Time to copy array: O(n)
 - O(\log_2(n)) + O(n) is O(n)
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d. How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to exceed a multiple of d
 • At sizes 0, d, $2d$, … , n/d.

• Copying an array of size kd takes ckd steps for some constant c, giving a total of

\[
\sum_{k=1}^{n/d} ckd = c d \sum_{k=1}^{n/d} k = cd \left(\frac{n}{d} \right) \left(\frac{n}{d} + 1 \right) / 2 = O(n^2)
\]
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling. How long does it take to add \(n \) items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
 - At sizes 0, 1, 2, 4, 8 … \(2^{\log_2 n} \)
- Copying an array of size \(2^k \) takes \(c \ 2^k \) steps for some constant \(c \), giving a total of
 \[
 \sum_{k=1}^{\log_2 n} c 2^k = c \sum_{k=1}^{\log_2 n} 2^k = c \ (2^{\log_2 n+1} - 1) = O(n)
 \]
- Very cool!
Vectors vs. SLL

<table>
<thead>
<tr>
<th>Operation</th>
<th>Vector</th>
<th>SLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>addLast</td>
<td>$O(1)$ or $O(n)$ (if resize)</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>removeLast</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>getLast</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>addFirst</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>removeFirst</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>getFirst</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>get(i)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>set(i)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove(i)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>contains</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove(o)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Common Complexities

For \(n \) = measure of problem size:

- \(\mathcal{O}(1) \): constant time and space
- \(\mathcal{O}(\log n) \): divide and conquer algorithms, binary search
- \(\mathcal{O}(n) \): linear dependence, simple list lookup
- \(\mathcal{O}(n \log n) \): divide and conquer sorting algorithms
- \(\mathcal{O}(n^2) \): matrix addition, selection sort
- \(\mathcal{O}(n^3) \): matrix multiplication
- \(\mathcal{O}(n^k) \): cell phone switching algorithms
- \(\mathcal{O}(2^n) \): subset sum, graph 3-coloring, satisfiability, ...
- \(\mathcal{O}(n!) \): traveling salesman problem (in fact \(\mathcal{O}(n^2 2^n) \))
Recursion

• General problem solving strategy
 • Break problem into sub-problems of same type
 • Solve sub-problems
 • Combine sub-problem solutions into solution for original problem
Many algorithms are recursive
 - Can be easier to understand (and prove correctness/state efficiency of) than iterative versions

Today we will review recursion and then talk about techniques for reasoning about recursive algorithms
Factorial

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$
- How can we implement this?
 - We could use a for loop…

- But we could also write it recursively
 - $n! = n \cdot (n-1)!$
 - $0! = 1$
Factorial

fact(3) → 3*2 = 6
fact(2) → 2*1 = 2
fact(1) → 1*1 = 1
fact(0)
Factorial

- In recursion, we always use the same basic approach.
- What’s our base case? [Sometimes “cases”]
 - n=0: fact(0) = 1
- What’s the recursive relationship?
 - n>0: fact(n) = n · fact(n-1)
public class fact{

 // Pre: n >= 0
 public static int fact(int n) {
 if (n==0) {
 return 1;
 }
 else {
 return n*fact(n-1);
 }
 }

 public static void main(String args[]) {
 System.out.println(fact(Integer.valueOf(args[0]).intValue()));
 }
}
Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...

• Definition
 • \(F_0 = 1, F_1 = 1\)
 • For \(n > 1\), \(F_n = F_{n-1} + F_{n-2}\)

• Inherently recursive!

• It appears almost everywhere
 • Growth: Populations, plant features
 • Architecture
 • Data Structures!
public class fib{
 // pre: n is non-negative
 public static int fib(int n) {
 if (n==0 || n == 1) {
 return 1;
 }
 else {
 return fib(n - 1) + fib(n - 2);
 }
 }

 public static void main(String args[]) {
 System.out.println(fib(Integer.valueOf(args[0]).intValue()));
 }
}
Towers of Hanoi

• Demo

• Base case:
 • One disk: Move from start to finish

• Recursive case (n disks):
 • Move smallest n-1 disks from start to temp
 • Move bottom disk from start to finish
 • Move smallest n-1 disks from temp to finish

• Let’s try to write it....
Recursion Tradeoffs

Advantages
- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious non-recursive solutions

Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
 - E.g. recursive fibonacci method
Alternate contains() for Vector

// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
 if (from > to)
 return false; // Base case: empty range
 else
 return elt.equals(elementData[from]) ||
 contains(elt, from+1, to);
}

public boolean contains(E elt) {
 return contains(elt, 0, size()-1); }

• What’s the time complexity of contains?
 • \(O(\text{to} – \text{from} + 1) = O(n)\) (\(n\) is the portion of the array searched)
 • Why?
 • Bootstrapping argument! True for: to – from = 0, to – from = 1, …
• Let’s formalize this bootstrapping idea....
Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Use to simultaneously prove an infinite number of theorems!
Mathematical Induction

- Example: Prove that for every $n \geq 0$

\[
P_n : \sum_{i=0}^{n} i = 0 + 1 + \ldots + n = \frac{n(n+1)}{2}
\]

- Proof by induction:
 - Base case: P_n is true for $n = 0$ (just check it!)
 - Inductive hypothesis: If P_n is true for some $n \geq 0$, then P_{n+1} is true.

\[
P_{n+1} : 0 + 1 + \ldots + n + (n + 1) = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2}
\]

Check: $0 + 1 + \ldots + n + (n + 1) = \frac{n(n+1)}{2} + (n + 1) = \frac{(n+1)(n+2)}{2}$

- First equality holds by assumed truth of P_n!
Mathematical Induction

Principle of Mathematical Induction (Weak)

Let $P(0)$, $P(1)$, $P(2)$, ... Be a sequence of statements, each of which could be either true or false. Suppose that

1. $P(0)$ is true, and
2. For all $n \geq 0$, if $P(n)$ is true, then so is $P(n+1)$.

Then all of the statements are true!

Note: Often Property 2 is stated as

2. For all $n > 0$, if $P(n-1)$ is true, then so is $P(n)$.

Apology: I do this a lot, as you’ll see on future slides!