This week you will have the opportunity to explore two algorithms for unsupervised learning – one clustering algorithm and one “autoencoding” algorithm. In unsupervised learning, data are presented to an algorithm in the form of training examples. The difference between these training examples and those you have seen earlier this semester, is that they are unlabeled. That is, the training examples are described by attribute information, but they have no associated class. The goal in clustering is to find groups of examples that are similar to each other but distinct from other groups of examples. The goal in autoencoding algorithms is to infer new features from existing ones. This is particularly useful in the context of deep learning, which you will revisit this week.

This will be your last structured assignment of the semester. During the final week of classes each of you will give a brief (12 minute) presentation related to a machine learning application.

1 Clustering

This week you will consider the simple k-means and EM clustering algorithms, with a focus on the former.

The basic idea of the k-means algorithm is as follows. Randomly select k points in your example space. These are taken to be the initial centers of clusters. (So there will be k clusters.) The training instances are then assigned to a cluster, based on their distance from each of the k centers. Once all examples have been assigned to clusters, k new centers are found by computing the mean of each cluster. The process then repeats. All training instances are assigned to clusters based on their distance to the new centers, etc. Once the centers become stable, you’re done. A brief description of this algorithm and a visualization can be found at:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

There are clearly advantages and disadvantages to this algorithm. There are also alternatives, such as the EM algorithm. EM assumes that the training instances were generated by a mixture of Gaussians and uses this assumption to perform clustering in a manner roughly analogous to k means. It hypothesizes the values of the parameters and then revises those hypotheses with each iteration of the algorithm.

1.1 Reading

There are many sources from which you can learn about k-means and EM. They include:

• Mitchell, Section 6.12,
• Alpaydin, Sections 7.1-7.4,
• Witten and Frank, pages 137-138, 262-266, 337-338.

You aren’t required to read all of these. It’s up to you to read as much as you need in order to do the implementation of k-means and to have a good high-level understanding of EM.

1.2 Implementation

This week one of your exercises will involve the implementation of the k-means algorithm. This algorithm is conceptually fairly simple, but as you’ve seen with other algorithms you’ve implemented this semester, some details can be tricky and debugging is non-trivial. Please don’t wait until the last minute to start this.

As the readings make clear, there is no known theoretical way to select an optimal value for k, the number of clusters. For this exercise, however, you will be training on data sets for which we have class labels. You should not treat the class labels as attributes!!! However, you can use this information to specify a good value for k.

The two data sets with which you will be working are iris, glass, and vehicle. I’ve selected these as they have only real-valued attributes. This is essential as you will need to compute the Euclidean distance
from a training instance to the center of a cluster. (There are versions of clustering algorithms that work
with discrete-valued attributes, but we won’t consider them this week.) In order to handle real-valued data,
you will undoubtedly need to make some changes to the code you wrote previously to read data from an
“ARFF” file. The changes should be fairly small, however.

Your k-means clustering program should do the following:

• Read the training instances from the file. Don’t discard the class information. While you can’t use it
for clustering, you will need it later for assigning names to the clusters and for checking the accuracy
of the clusters. You do not need to normalize the attribute values.

• Apply the k-means algorithm to find clusters (three in the case of iris and four for vehicles).

• Assign each final cluster a name by choosing the most frequently occurring class label of examples in
the cluster.

• Find the number of examples that were put in clusters in which they didn’t belong. You can check
your results by comparing with Weka. Note that your results for iris will likely be close to Weka’s in
most cases. The results in the other data sets will likely vary more.

2 Unsupervised Learning in Deep Learning

2.1 Reading

Please read

• “Building High-level Features Using Large Scale Unsupervised Learning”, a paper by Le, Ranzato,
Monga, Devin, Chen, Corrado, Dean, and Ng.

This paper appeared in the proceedings of ICML 2012, the 29th International Conference on Machine Learn-
ing. You can find a link to the paper by going to the Assignments page for this course.

2.2 Exercise

This is a great paper with a really cool result, but it isn’t trivial to understand. You will likely need to
consult some of the references in the paper. For example, I recommend “Reducing the Dimensionality of
Data with Neural Networks” by Hinton and Salakhutdinov.

Please be ready to present the paper. You should be sure to cover:

• The motivation for the work.

• The algorithm.

• Experiment infrastructure and input data.

• Results.

You should plan to spend at least a third of the time on the algorithm. To do this well, you will need to
provide more detail than the paper gives. Again, I suggest going back to Hinton and Salakhutdinov’s paper.
This is not to say that you have to present every detail of the algorithm, but I expect you to demonstrate
a real grasp of at least one fundamental aspect of the overall algorithm and a general understanding of the
rest.

At the end of the tutorial session, I will ask that you turn in your presentation notes.

You may work with your tutorial partner on a single presentation. Alternatively, simply coordinate the
high-level structure of the presentation so that it flows smoothly. Note, however, that both partners should
be comfortable discussing the algorithm.