
Chapter 8

String Theory

A great deal of the data processed by computer programs is represented as text. Word processors,
email programs, and chat clients are primarily concerned with manipulating text. Most web pages
contain plenty of text in addition to media of other forms. In addition, we have seen that the
communication protocols upon which many network applications rely are based on sending text
messages back and forth between client and server computers.

Up to this point, we have seen only a small portion of the mechanisms Java provides for
processing text. We have learned that pieces of text can be described in our programs using quoted
literals and associated with variable names as objects of the type String. We have seen that
such objects can be used as parameters in constructions and invocations associated with many
other types. We have, however, seen very few operations designed to process the String values
themselves. The notable exception is that we have seen that the concatenation operator, +, can be
used to combine the contents of two Strings to form a longer String.

In fact, Java provides an extensive collection of methods for manipulating Strings. In this
chapter we will introduce some of the most important of these methods. We will learn how to
access sub-parts of Strings, how to search the text of a String for particular subsequences, and
how to make decisions by comparing String values with one another. We will deliberately avoid
trying to cover all of the String operations that Java provides. There are far too many. We will
limit our attention to the most essential methods. We will, however, explain how you can access
the online documentation for the standard Java libraries so that you can learn about additional
methods you can use with Strings.

8.1 Cut and Paste

Anyone who has used a computer is probably familiar with “cut and paste.” This phrase refers to
the paradigm that is used by almost all programs that support text editing with a graphical user
interface. Such programs let you extract a fragment of a larger text document (i.e., cut) and then
insert a copy of the fragment elsewhere in the document (i.e., paste). Not surprisingly, two of the
most important operations you can perform on text within a program are essentially “cutting” and
“pasting.”

The ability to paste text together within a Java program is provided by the concatenation
operator, +. As we have seen, if prefix and suffix are two String variables, then the expression

prefix + suffix
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describes the String obtained by pasting their contents together. For example, if we set

suffix = "ion field"

and

prefix = "enter the construct"

then the expression prefix + suffix will describe the String

"enter the construction field"

A fragment can be extracted (i.e., cut) from a String using a method named substring.
Actually, the substring method is a bit more akin to an editor’s “copy” operation than the
standard “cut” operation. It allows a program to extract a copy of a subsection of a String but
leaves the source String unchanged.

When you cut or copy text within a word processor or text editor, you select the desired text
using the mouse. When you are using the substring method, however, you must specify the
fragment of text you want to extract using the arguments you provide in the method invocation.
This is done by providing an int parameter identifying the first character of the desired fragment
and, optionally, an int identifying the first character following the fragment.

The parameter values provided to the substring method are interpreted as specifying the
number of characters that come before the character being identified. That is, a parameter value
of 0 describes the first character in a String since there are 0 characters before this character and
a value of 1 describes what you would normally call the second character. Therfore, if we declared
and initialized a string variable

String bigword = "thermoregulation";

then the expression

bigword.substring( 1, 4 )

would produce the result "her", while the expression

bigword.substring( 0, 3 )

would produce the result "the".
It is important to note that the second parameter of the substring method indicates the

position of the first character that should not be included in the result, rather than the position of
the last character that should be included. Thus, assuming that the variable bigword was declared
and initialized as shown above, the value described by the expression

bigword.substring( 1, 2 )

would be "h", since this invocation asks for all the characters from position 1 in bigword up to but
not including position 2. In general, an expression of the form

bigword.substring( p, p+n )

returns a String containing the n characters found starting at position p within bigword. In
particular, an expression of the form
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bigword.substring( p, p )

describes the String containing zero characters, "".
Java provides a method named length that returns the number of characters found within a

String. For example,

bigword.length()

would return the value 16. As a result, an invocation of the form

bigword.substring( p, bigword.length() )

describes all the characters from position p within bigword through the last character in the
String. Using substring to extract a suffix from a String in this way is common enough that
Java provides an easier way to do it. The second parameter to the substring method is optional.
When substring is invoked with just one parameter, it acts as if the length of the String was
provided as the second parameter. That is,

bigword.substring( p )

is equivalent to

bigword.substring( p, bigword.length() )

For example,

bigword.substring( 13 )

would return the value "ion".
The values provided as parameters to the substring method should always fall between 0 and

the length of the String to which the method is being applied. If two parameters are provided,
then the value of the first parameter must not be greater than that of the second. For example,
the invocation

bigword.substring( 11, 20 )

would cause a run-time error since bigword only contains 16 characters. The invocation

bigword.substring( 10, 5 )

would produce an error since the starting position is greater than the ending position, and

bigword.substring( -1, 10 )

would cause an error since -1 is out of the allowed range for positions within a String.
The substring method does not modify the contents of the String to which it is applied. It

merely returns a portion of that String. Thus, still assuming that bigword is associated with the
String "thermoregulation", if we were to declare a local variable

String smallword;

and then execute the statement

smallword = bigword.substring( 5, 8 );
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the value associated with smallword would be "ore", but the value associated with bigword would
remain "thermoregulation". While it would not make much sense to do so, we could even execute
the statement several times in a row as in

smallword = bigword.substring( 5, 8 );
smallword = bigword.substring( 5, 8 );
smallword = bigword.substring( 5, 8 );

The final result would still be the same. Since the value associated with bigword is not changed,
the final value associated with smallword would still be "ore".

In fact, none of the methods presented in this chapter actually modify the String values to
which they are applied. Instead, they return new, distinct values. The only way to change the
String associated with a variable name is to assign a new value to the name. For example, if we
wanted to make bigword refer to a substring of "thermoregulation" we might say

bigword = bigword.substring( 6 );

After this statement was executed, bigword would be associated with the String "regulation".
Unlike the assignment to smallword discussed in the preceding paragraph, the result of executing
this assignment several times will not be the same as executing the assignment just once. Executing

bigword = bigword.substring( 6 );

a second time will leave bigword associated with the String "tion" since t appears in position
6 (i.e., it is the seventh letter) in "regulation". A third execution would result in an error since
there are less than 6 characters in the String "tion".

In general, executing the statement

bigword = bigword.substring( p );

will effectively remove a prefix of length p from the value associated with the variable bigword.
Similarly, executing the statement

bigword = bigword.substring( 0, p );

will remove a suffix from bigword so that only a prefix of length p remains. If, on the other hand,
we want to remove a substring from the middle of a String value, the substring method alone is
not enough. To do this, we have to use substring and concatenation together.

Suppose for example, that we want to turn "thermoregulation" into "thermion".1 The ex-
pression

bigword.substring( 0, 5 )

describes the String "therm", and, as we showed above,

bigword.substring( 13 )

describes the String "ion". Therefore, the assignment

bigword = bigword.substring( 0, 5 ) + bigword.substring( 13 );

will associate bigword with the value "thermion". In general, executing an assignment of the form

bigword = bigword.substring( 0, start ) + bigword.substring( end );

will associate bigword with the String obtained from its previous value by removing the characters
from position start up to but not including position end.

1“Thermion” is actually a word! It refers to an ion released by a material at a high temperature.
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8.2 Search Options

The substring method can be very handy when writing programs that support communications
through the Internet. Many of the Internet’s protocols depend on Strings. Web page addresses,
email addresses, and IM screen names are all Strings. To interpret these and other Strings,
programs often need the ability to access the subparts of a String. To apply the substring method
effectively in such applications, however, we need a way to find the positions of the subparts of
interest. In this section, we will introduce a method named indexOf which makes it possible to do
this.

For example, if you want to visit a web page and know its address, you can enter this address
in a form known as a URL (Uniform Resource Locator) or URI (Uniform Resource Identifier). For
example, if you wanted to read the editorial section of the New York Times online, you could enter
the URL

http://www.nytimes.com/pages/opinion/index.html

An address of this form has two main parts. The text between the pair of slashes and the
first single slash, "www.nytimes.com", is the name of a computer on the Internet that acts as
the web server for the New York Times. The characters that appear after this machine name
"/pages/opinion/index.html" describe a file on that server that contains a description of the
contents of the editorial page. In particular, it indicates that the desired file is named index.html
and that it can be found within a directory or folder named opinion within a directory named
pages. Such a complete specification of the location of a file is called a file path name.

In order to display the contents of a web page, a web browser requests that the server named
in the page’s URL send it the contents of the file named by the text following the server name in
the URL. The first step in making such a request, is to create a TCP connection to port 80 on the
web server.

To imagine how the code within a web browser might actually accomplish this, suppose that
the URL shown above was associated with a local variable declared as

String url = "http://www.nytimes.com/pages/opinion/index.html";

The substring method could then be used to extract either the server name or the file path name
from the URL. For example, the expression

url.substring( 7, 22 )

would produce the server name "www.nytimes.com" as a result. The browser could therefore
establish a TCP connection to the server and associate it with the name toServer using the
declaration

NetConnection toServer = new NetConnection( url.substring( 7,22 ), WEB_PORT );

(assuming that the name WEB PORT was associated with the port number 80).
The problem with such code is that while the numbers 7 and 22 will work for the New York

Times site, they will not work for many other URLs. If you decided you needed to read the
editorials published in the Wall Street Journal (to balance those found in the Times), you would
need to enter the URL

http://www.wsj.com/public/page/opinion.html
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If this String was associated with the variable named url, then the expression

url.substring( 7, 22 )

would return the value "www.wsj.com/pub". If you tried to use this value as a parameter in a
NetConnection construction, you would receive an error message because this String is not the
name of any server on the network. If you want to connect to the server for the Wall Street Journal,
you have to replace 22 with the position of the end of the server’s name within its URL, 18. This
would lead to a declaration of the form

NetConnection toServer = new NetConnection( url.substring( 7,18 ), WEB_PORT );

Of course, we cannot include separate code for every web server in the world within a browser.
We need to find a way to write code that can extract the server’s name from a URL correctly
regardless of its length. The indexOf method makes this possible.

In its simplest form, the indexOf method takes a substring to look for as a parameter and
returns an int value describing the position at which the first copy of the substring is found within
the String to which the method is applied. For example, assuming we declare

String url = "http://www.nytimes.com/pages/opinion/index.html";

then the expression

url.indexOf( "www" )

would produce the value 7, and the expression

url.indexOf( "http" )

would return the value 0.
We could use such simple invocations of indexOf to write code to extract the server’s name

from a URL, but it would be a bit painful. The problem is that the best way to find the end of the
server’s name is to use indexOf to look for the "/" that comes after the name. If we try to use the
expression

url.indexOf( "/" )

to do this, it won’t return 22, the position of the "/" that comes after the server name. Instead, it
will return 5, the position of the first "/" that appears in the prefix http://. By default, indexOf
returns the position of the first occurrence of the String it is asked to search for. To dissect a
URL, however, we need a way to make it find the third "/".

Java makes this easy by allowing us to specify a position at which we want indexOf to start its
search as a second, optional parameter. For example, while the expression

url.indexOf( "ht" )

would return the value 0 since the value associated with url begins with the letters "ht", the
expression

url.indexOf( "ht", 5 )
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would return 43 because the first place that the letters "ht" appear after position 5 in the String
is in the "html" at the very end.

It is important to remember that indexOf starts it search immediately at the position specified
by the second parameter. Thus the expressions

url.indexOf( "/", 5 )

and

url.indexOf( "/", 6 )

would return 5 and 6, respectively, because there are slashes at positions 5 and 6 in url. The
expression

url.indexOf( "/", 7 )

on the other hand, would return 22, the position of the first slash found after the "http://" prefix.
In general, this expression will return the position of the slash that indicates the end of the server’s
name within the URL. This is exactly what we need to extract the server’s name from the URL.

To make the code to extract the server name as clear as possible, we will associate names with
the positions where the server’s name begins and ends. We will therefore begin with two variable
declarations

int nameStart = 7;
int nameEnd = url.indexOf( "/", nameStart );

Then, we can extract the server name and associate it with a local variable

String serverName = url.substring( nameStart, nameEnd );

Finally, we can use the server’s name to create a NetConnection through which we can send a
request for the desired web page.

NetConnection toServer = new NetConnection( serverName, WEB_PORT );

These instructions will work equally well for both of the URLs

http://www.nytimes.com/pages/opinion/index.html

and

http://www.wsj.com/public/page/opinion.html

as well as many others.
There is one remaining aspect of indexOf that we need to discuss. What should indexOf do if

it cannot find the substring we ask it to search for? For example, consider what will happen if we
try to execute the code in the preceding paragraph when the variable url is associated with the
familiar address

http://www.google.com
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int nameStart = 7;
int nameEnd = url.indexOf( "/", nameStart );
String serverName;
if ( nameEnd == -1 ) {

serverName = url.substring( nameStart );
} else {

serverName = url.substring( nameStart, nameEnd );
}
NetConnection toServer = new NetConnection( serverName, WEB_PORT );

Figure 8.1: Code fragment to connect to a server specified in a URL

The last slash in Google’s URL appears at position 6. Therefore, if indexOf starts searching for a
slash in position 7, it will not find one.

By definition, in any situation where indexOf cannot find a copy of the substring it is asked
to search for, it returns the value -1. Therefore, when indexOf is used it is typical to include an
if statement to check whether the value returned is -1 and to execute appropriate code when this
occurs. For example, if indexOf cannot find a slash after position 7 in a URL, then we can assume
that everything from position 7 until the end of the String should be treated as the host name.
Based on this idea, code that will correctly extract the server name from a URL and connect to
the server is shown in Figure 8.1.

There is one slightly subtle aspect of the code in Figure 8.1. Note that the declaration of the
local variable serverName is placed before the if statement rather than being combined with the
first assignment to the name as we have done for the local variables nameStart and nameEnd. This
is essential. If we had attempted to declare serverName by replacing the first assignment within
the if statement with an initialized declaration of the form

String serverName = url.substring( nameStart );

the program would produce an error message when compiled. The problem is that the first assign-
ment within the if statement appears within a set of curly braces that form a separate scope. Any
name declared within this scope, can only be referenced within the scope. Therefore, if serverName
was declared here it could only be used in the first half of the if statement.

8.3 Separate but .equals()

There are many situations where a program needs to determine whether the contents of an entire
String match a certain word or code. For example, a program might need to determine whether
a user entered "yes" or "no" in answer to a question in a dialog or whether the code an SMTP
server sent to a client included the code for success ("250") or failure ("500"). Java includes a
method named equals that can be used in such programs. As an example of the equals method,
we will show how it can be used to perform the appropriate action when one of several menu items
is selected.

Many programs include menus that are used to enter a time of day. There may be one menu
to select the hour, one to select a number of minutes, and a final menu used to indicate whether
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Figure 8.2: Selecting daytime from an AM/PM menu

Figure 8.3: Menu selection makes darkness fall

the time is "AM" or "PM". To explore a very specific aspect of the code that such programs might
contain, we will consider a somewhat silly program that contains just one menu used to select
between "AM" or "PM". This menu will appear alone in a window like the one shown in Figure 8.2.

During the day, it is bright outside. Accordingly, when the "AM" menu item in our program is
selected, the background of its window will be white as in Figure 8.2. On the other hand, when the
"PM" menu item is selected, the program’s window will become pitch black as shown in Figure 8.3.

A program that implements this behavior is shown in Figure 8.4. The code that uses the equals
method can be found in the menuItemSelected method. When the user selects either the "AM" or
"PM" menu item, the first line in this method:

String chosen = menu.getSelectedItem().toString();

associates the local variable name chosen with the item that was selected. Then, an if statement
with the header

if ( chosen.equals( "AM" ) ) {

is used to decide whether to make the background black or white. The equals method will return
true only if the String passed as a parameter, "AM" in this example, is composed of exactly the
same sequence of symbols as the String to which the method is applied, chosen.

This should all seem quite reasonable, but if you think hard about some of the conditions we
have included in if statements in other examples, the existence of the equals method may strike
you as a bit odd. Recall that in many if statements we have used relational operators like < and
>=. One of the available relational operators is ==, which we have used to test if two expressions
describe the same value. If Java already has ==, why do we also need an equals method? Why
not simply replace the header of the if statement seen in Figure 8.4 with:
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// A menu driven program that illustrates the use of .equals

public class NightAndDay extends GUIManager {
// Dimensions of the programs’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 100;

// The menu that controls the background color

private JComboBox menu = new JComboBox();

// Place a menu in a window on the screen

public NightAndDay() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );

menu.addItem( "AM" );
menu.addItem( "PM" );
contentPane.add( menu );

changeBackground( Color.WHITE );
}

// Respond to menu selections by setting the background color

public void menuItemSelected() {
String chosen = menu.getSelectedItem().toString();

if ( chosen.equals( "AM" ) ) {
changeBackground( Color.WHITE );

} else {
changeBackground( Color.BLACK );

}
}

// Set the background color of both the menu and contentPane

private void changeBackground( Color shade ) {
menu.setBackground( Color.WHITE );
contentPane.setBackground( Color.WHITE );

}
}

Figure 8.4: A trivial simulation of the cycle of night and day
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if ( chosen == "AM" ) {

Wouldn’t this version of the program do the same thing?
The short and somewhat embarrassing answer to the last question is that the behavior of the

program in Figure 8.4 would not change if we used == instead of equals. In general, however, ==
and equals do not always produce the same answer, as we can see by making a very minor change
in our program.

The difference between using equals and == is closely connected to the differences between
primitive values and objects that we discussed in Section 7.2.2. Java views values of primitive
types like int as abstract and unchanging. As we explained in that section, it would not make
sense to say

new int( 3 )

in a Java program, because there is only one value called 3. It would make no sense to make another
one. If several variables in a Java program are associated with the value 3 at the same time, then
we think of them as all being associated with exactly the same thing rather than each with their
own separate copy of 3.

With objects, on the other hand, it is possible to have two names refer to two objects that are
identical but distinct. For example, if we say

JButton start = new JButton( "Start" );
JButton go = new JButton( "Start" );

the two variables declared will refer to distinct but identical objects.
Strings are not primitive values in Java. Strings are objects. Therefore, it is possible to have

two Strings that are identical, in the sense that they contain exactly the same characters, but still
distinct. This usually happens when at least one of the String values involved is produced using
a String method or the concatenation operator. For example, suppose that we replaced the code
to construct the menu used in the NightAndDay program with the following code:

String commonSuffix = "M":
menu.addItem( "A" + commonSuffix );
menu.addItem( "P" + commonSuffix );

While this is a silly change to make, one would not expect this change to alter the way in which the
program behaves. If the program used == to determine which menu item was selected, however,
this change would make the program function incorrectly.

The issue is that when we tell Java to create a String using the + operator, it considers the
new string to be distinct from all other Strings. Even though we didn’t explicitly perform a
construction, the concatenation operator produces a new value. In particular, the String produced
by the expression

"A" + commonSuffix

would be distinct from the String produced by the expression "AM", even though both Strings
would have exactly the same contents.

When we ask Java if two Strings (or in fact if any two objects) are ==, it produces the result
true only if the two operands we provide are actually identical. When we ask Java if two Strings
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are equals, on the other hand, it produces the result true only if the two operands are Strings
that contain exactly the same sequence of symbols.

In particular, if we change the NightAndDay program to use the expression

"A" + commonSuffix

to describe the first item to be placed in menu, then when the user selects this item, evaluating the
condition

chosen.equals( "AM" )

will produce true, while the condition

chosen == "AM"

would produce false. As a result, the program would never recognize that a user selected the "AM"
item and therefore never set the background back to white after it had become black.

As this example illustrates, it can be hard to predict when Java will consider two Strings to
be identical. The good news is that it is not hard to avoid the issue in your programs. Simply
remember that when you want to check to see if two String values are the same you should use
equals. You should almost never use == to compare the values of two Strings.

8.4 Methods and More Methods

At this point, we have introduced just a handful of the methods Java provides for working with
String values. The methods we have presented are all that you will really need for the vast
majority of programs that manipulate Strings. Many of the remaining methods, however, can be
very convenient in certain situations.

For example, suppose that you need to test whether the word "yes" appears somewhere in a
message entered by a user. You can do this using a technique involving the indexOf method. The
code in an if statement of the form

if ( userMessage.indexOf( "yes" ) >= 0 ) {
. . .

}

will only be executed if the substring "yes" appears somewhere within userMessage. Can you see
why? Nevertheless, Java provides a different method that is a bit easier to use in such situations
and leads to much clearer code. The method is named contains. It returns true only if the value
provided to the method as a parameter appears within the String to which it is applied. Thus, we
can replace the code shown above with

if ( userMessage.contains( "yes" ) ) {
. . .

}

An important special case of containing a substring is starting with that substring. For example,
we have seen that the messages an SMTP server sends to a client all start with a three digit code
indicating success or failure. The success code used by SMTP is "250". Therefore, an SMTP
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client is likely to contain code to determine whether each message it receives from the server starts
with "250". This could be done using the length, equals, and substring methods (and it would
probably benefit the reader to take a moment to figure out exactly how), but Java provides a
convenient alternative. There are two String methods named startsWith and endsWith. Both
of these methods take a single String as a parameter and return true or false depending on
whether the parameter appears as a prefix (or suffix) of the String to which the method is applied.
For example, an if statement of the form

if ( serverMessage.startsWith( "250" ) ) {
. . .

}

will execute the code in its body only if "250" appears as a prefix of serverMessage.
Several String methods are designed to make it easy to deal with the difference between upper

and lower case characters. In many programs, we simply want to ignore the difference between
upper and lower case. For example, if we were trying to see if userMessage contained the word
“yes”, we probably would not care whether the user typed "yes", "Yes", "YES", or even "yeS".
The two if statements shown above, however, would only recognize "yes".

There are two String methods named toUpperCase and toLowerCase that usually provide a
simple way to deal with such issues. The toLowerCase method returns a String that is identical
to the String to which it is applied except that all upper case letters have been replaced by the
corresponding lower case letters. The toUpperCase method performs the opposite transformation.
As an example, the body of an if statement of the form

if ( userMessage.toLowerCase().contains( "yes" ) ) {
. . .

}

will be executed if userMessage contains "yes", "Yes", "YES", or even "yeS". The subexpression

userMessage.toLowerCase()

describes the result of replacing any upper case letters that appeared in userMessage with lower case
letters. Therefore, if userMessage had contained "Yes" or "YES", the String that toLowerCase
returned would contain "yes".

8.5 Online Method Documentation

We could continue describing additional String methods for quite a few more pages. There are
methods named replace, equalsIgnoreCase, compareTo, trim, and many others. A better alter-
native, however, is to tell you how to find out about them yourself.

Sun Microsystems, the company that created and maintains the Java programming language,
provides online documentation describing all the methods that can be applied to object types
defined within the standard Java library including Strings. If you point your favorite web browser
at

http://java.sun.com/j2se/1.5.0/docs/api/
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Figure 8.5: Initial page displayed when visiting Sun’s Java documentation site
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you should see a page that looks something like the one shown in Figure 8.5.2

Sun has organized its on-line Java documentation around the classes in the Java libraries. There
is a page that describes the methods associated with the String class, a page that describes the
JTextField class, and so on. Therefore, to navigate through the documentation, it helps to know
what class you are trying to learn more about. Luckily, we know that we want to learn about the
String class.

The windows in which Sun’s documentation are displayed are divided into three panels. As
shown in Figure 8.5, the panel on the right side of the window occupies most of the available space.
This is used to display the documentation you have asked to see. In Figure 8.5 is is used to display
brief summaries of the “packages” into which all of the classes in the Java libraries are divided.
Once you select a particular class, the documentation for this class will be placed in this panel.

The left margin of the window is divided into two smaller panels. The upper panel holds a list
of package names and the lower panel holds a list of class names. Initially, the lower panel contains
the names of all the classes in the Java libraries. By clicking on a package name in the upper panel,
you can reduce the list of classes displayed in the lower panel to just those classes in the selected
package.

To examine the documentation of a particular class, you can simply scroll through the names
shown in the lower left panel until you find the name of that class. If you then click on the name,
the documentation for that class will be placed in the panel on the right. For example, in Figure 8.6
we show how the window might look immediately after we clicked on the name of the String class
in the lower left panel.

We could use the scroll bar on the right side of the window in Figure 8.6 to read through the
entire description of the String class, but if we are just trying to learn about more of the methods
provided by the class, there is a shortcut we can use. Near the top of the class, there is a short list
of links to summaries of the features of the class. One of these, which is identified with an arrow
in Figure 8.6 appears under the word “METHOD”. If you click on this link, it scrolls the contents
of the page to display a collection of short summaries of the methods of the String class as shown
in Figure 8.7.

In many cases, these short summaries provide enough information to enable you to use the
methods. If not, you can easily get a more detailed description. Just click on the name of the
method in which you are interested. For example, if you click on the name of the contains
method, the contents of the window will scroll to display the complete description of the contains
method as shown in Figure 8.8. As you can see, the complete description of a method sometimes
provides little more than the summary.

Of course, by following similar instructions you can use Sun’s online documentation to learn
more about other types we have worked with. For example, if you search for JButton or JComboBox
in the list found within the bottom left panel of the documentation window, you will be able to
read about many additional methods associated with these GUI components.

2There is, of course, a risk in including a web site address in any published text. At some point in the future,
Sun Microsystems is likely to reorganize their online documentation so that the address given above simply does not
work. In this event, try going to http://java.sun.com and follow the links for “API documentation”. With a bit of
luck, you will still be able to find the pages described here.
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Figure 8.6: Page displaying the documentation for the String class

212



Figure 8.7: Summaries of the methods of the String class

Figure 8.8: Online documentation for the contains method of the String class
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8.6 What a character!

As we have noted, String is not a primitive type. There is, however, a primitive type within Java
that is closely related to the String type. This type is named char. The values of the char type
are individual characters.

The relationship between the String and char types is fairly obvious. A String is a sequence
of char values, i.e., characters. A similar relationship exists in mathematics between a set and its
elements. The set {2, 3, 5} has the numbers 2, 3, and 5 as elements. In mathematics, the curly
braces used to surround the members of a set make it easy to tell the difference between a set
containing a single element and the element itself. The set containing the number 2, which we
write as {2} is clearly different from the number 2. Java provides a similar notational distinction
between String and char literals.

In Java, a char literal is denoted by placing a single character or an escape sequence that
describes a single character between single rather than double quotes. Thus, while "E" is a String
containing a single character, ’E’ is a single character or char value. Similarly, ’7’, ’?’, ’ ’, and ’\n’
are char literals describing the digit 7, the question mark, the space character, and the newline
character.

While related, char and String are distinctly different types in Java. If we declare two variables

private char c;
private String s;

then the assignments

c = "E";

and

s = ’E’ ;

would both be considered illegal as would the assignments

c = s;

and

s = c;

There is a method that makes it possible to extract individual characters from a String. This
method is named charAt. It takes the position of the character within the String as a parameter,
treating 0 as the position of the first character. Thus, if we executed the assignments

s = "characters";
c = s.charAt( 3 );

the variable c would become associated with the value ’r’
None of the String methods described above can be applied to char values. For example, given

the variable c declared as a char, it would be illegal to say

c.toLowerCase()
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Actually, there are no methods that can be applied to char values. char is a primitive type like
int and boolean. Like these other primitive types, there are operators that can be applied to char
values, but no methods.

In fact, the char type is more closely related to the other primitive types than you might
imagine. Internally, the computer uses a numeric code to represent each character value. For
example, the number 65 is used to represent the character ’A’, 95 is used to represent ’a’, and 32
is use to represent the space (’ ’). The numbers assigned to various characters are in some sense
arbitrary. ’A’ is clearly not the 65th letter of the alphabet. However, the numbers used to represent
characters are not chosen at random. They are part of a widely accepted standard for representing
text in a computer that is known as Unicode.

In many contexts, Java treats char values very much like the numeric type int. For example,
if you evaluate the expression

’A’ + 1

the answer will be 66, one more than the number used to represent an ’A’ internally. In Unicode,
consecutive letters in the alphabet are represented using consecutive numeric values. Therefore, if
you evaluate

’B’ - ’A’

the answer will be 1, and

’Z’ - ’A’

produces 25. On the other hand, the expression

’z’ - ’A’

produces 57 as an answer. The numeric values used for upper and lower case letters are not as
meaningfully related as for letters of a single case.

On the other hand, in some situations, Java treats char values as characters rather than num-
bers. For example, if you write

"ON" + ’E’

the answer produced is "ONE", not "ON69". On the other hand, if you write

"ON" + ( ’E’ + 0 )

the result produced is "ON69". This may seem confusing at first, but the rules at work here are
fairly simple.

Java understands that char values are numbers. Therefore, Java allows you to perform arith-
metic operations with char values. You can even say things like

’a’ * ’b’ + ’d’

Java also understands, however, that the number produced when it evaluates such an expression is
unlikely to correspond to a code that can be meaningfully interpreted in Unicode. Therefore, Java
treats the result of an arithmetic expression involving char values or a mixture of char and int
values as an int value. For example, it would be illegal to say
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char newChar = ’z’ - ’a’;

but fine to say

int charSeparation = ’z’ - ’a’;

This explains the fact that

"ON" + ( ’E’ + 0 )

produces "ON69". We already know that if you apply the + operator to a String value and an int
value, Java appends the digits that represent the int to the characters found in the String. The
character ’E’ is represented internally by the number 69. Therefore, Java interprets the expression
’E’ + 0 as a rather complicated way to describe the int value 69.

On the other hand, when you apply the + operator to a String value and a char value, Java
appends the character corresponding to the char’s numeric value to the characters found in the
String. Basically, in this context, Java interprets the char as a character rather than as a number.

There is one way in which it is particularly handy that Java treats char values as numbers.
This involves the use of relational operators. If we declare

private char c;

then we can say things like

if ( c > ’a’ ) { . . .

When relational operators are applied to char values, Java simply compares the numeric codes
used to represent the characters. This is useful because Unicode assigns consecutive codes to
consecutive characters. As a result, numeric comparisons correspond to checking relationships
involving alphabetical ordering.

For example, consider the if statement

if ( c >= ’a’ && c <= ’z’) {
. . .

} else if ( c >= ’A’ && c <= ’Z’) {
. . .

}

The condition in the first if checks to see if the value associated with c is somewhere between the
values used to represent lower case ’a’ and ’z’. This will only happen if c is associated with a lower
case letter. Therefore, the code placed in the first branch of the if will only be executed if c is a
lower case letter. For similar reasons, the second branch will only be executed if c is upper case.

8.7 Summary

In this chapter, we have explored the facilities Java provides for manipulating text. We introduced
one new type related to textual data, the char type and presented many methods of the String
type that had not been discussed previously. We showed how the substring and indexOf methods
together with the concatenation operator can be used to assemble and disassemble String values.
We also introduced several additional methods including contains, startsWith, toLowerCase and
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toUpperCase. More importantly, we outlined how you can use online documentation to explore
even more methods of the String class and of other Java classes.

Since the bulk of this chapter was devoted to introducing new methods, we conclude this section
with brief descriptions of the most useful String methods. We hope these summaries can serve as
a reference.

8.7.1 Summary of String Methods

someString.contains( otherString )
The contains method produces a boolean
indicating whether or not otherString ap-
pears as a substring of someString. If the
string provided as the otherString argu-
ment appears within someString then the
value produced will be true. Otherwise,
the result will be false.

someString.endsWith( otherString )
The endsWith method produces a boolean
indicating whether or not otherString ap-
pears as a suffix of someString. If the
string provided as the otherString ar-
gument is a suffix of someString then
the value produced will be true. If
otherString is not a suffix of someString,
the result will be false.

someString.equals( otherString )
The equals method produces a boolean in-
dicating whether or not otherString con-
tains the same sequence of characters as
someString. If the string provided as
the otherString argument is identical to
someString then the value produced will be
true. Otherwise, the result will be false.
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someString.indexOf( otherString )
someString.indexOf( otherString, start )

The indexOf method searches a string look-
ing for the first occurrence of another string
provided as the first or only parameter to
the method. If it finds an occurrence of
the argument string, it returns the posi-
tion of the first character where the match
was found. If it cannot find an occurrence
of the argument string, then the value -1
is produced. If a second actual parame-
ter is included in an invocation of indexOf,
it specifies the position within someString
where the search should begin. The result
returned will still be a position relative to
the beginning of the entire string.

someString.length()
The length method returns an int equal
to the number of characters in the string.
Blanks, tabs, punctuation marks, and all
other symbols are counted in the length.

someString.startsWith( otherString )
The startsWith method produces a
boolean indicating whether or not
otherString appears as a prefix of
someString. If the string provided as
the otherString argument is a prefix of
someString then the value produced will
be true. If otherString is not a prefix of
someString, the result will be false.

someString.substring( start )
someString.substring( start, end )

The substring method returns a specified
sub-section of the string to which it is ap-
plied. If a single argument is provided, the
string returned will consist of all characters
in the original string from the starting posi-
tion to the end. If both a start and end po-
sition are provided as arguments, the string
returned will consist of all characters from
the starting position in the original string
up to but not including the character at the
ending position. Positions within the string
are numbered starting at 0. If start or
end are negative or larger than the length
of the string, an error will occur. An error
will also occur if end is less than start. If
end is equal to start, then the empty string
("") will be returned.
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someString.toLowerCase( )
The toLowerCase method produces a
String that is identical to someString ex-
cept that any upper case letters are replaced
with the corresponding lower case letters.
someString itself is not changed.

someString.toUpperCase( )
The toUpperCase method produces a
String that is identical to someString ex-
cept that any lower case letters are replaced
with the corresponding upper case letters.
someString itself is not changed.
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