
Chapter 6

Class Action

In Chapter 1, we explained that Java uses the word class to refer to

“A set, collection, group, or configuration containing members regarded as having cer-
tain attributes or traits in common.”

We have seen that this description applies quite accurately to the classes provided by Java’s Swing
library. We have constructed groups of JTextFields and groups of JLabels as parts of the interface
provided by a single program. In each case, the objects created using a given class were distinct
from one another but shared many common attributes. Some of the similarities are discernible by
just looking at a program’s window as it runs. For example, all JTextFields look quite similar.
Other shared attributes are only visible to the programmer. Different sets of methods are associated
with each class. For example, while all JComboBoxes support the getSelectedItem method, this
method is not provided for members of the JTextField class.

When we first discussed the word class, however, we were not talking about library classes.
We were explaining why the word class appears in the header lines of our sample Java programs.
At this point, it should be clear that there is some connection between the library classes you
have been using and the classes you define when you write programs. Primarily, both types of
classes involve methods. You define methods within the classes you write and you invoke meth-
ods associated with library classes. At the same time, the classes you write seem very different
from library classes. You invoke methods associated with library classes, but you don’t invoke
the buttonClicked or textEntered methods included in your class definitions. The instructions
included in these methods get executed automatically in response to user actions.

In this chapter, we will see that there is actually no fundamental difference between classes
you define and the classes provided by the Java libraries. While the programs we have considered
thus far have all involved writing only one new class, this is not typical of Java programs. Most
Java programs involve the definition of many classes designed just for that program. All Java
programs involve one “main” class where execution begins. This class typically constructs new
objects described by additional class definitions written by the program’s author or included in
libraries and invokes methods associated with these objects. We will explore the construction of
such programs in this chapter.
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Figure 6.1: Stickies among other windows on a Mac OS system

6.1 Second Class

All the classes we have defined in earlier examples have described the behavior of a single window
on the computer’s screen. Accordingly, the simplest way we can introduce programs that involve
two or more class definitions is to consider how to write programs that display several distinct
windows. It isn’t hard to think of examples of such programs. While the main window displayed
by a word processor is used to display the document being edited, the program will often display
separate “dialog box” windows used to handle interactions like selecting a new file to be opened or
specifying a special font to use. In addition, when multiple documents are opened, each is displayed
in a separate window.

A word processor is a bit too complicated to present here, so we will instead examine a version of
what is probably the simplest, useful, multi-window program one could imagine. The program we
have in mind is distributed under the name Stickies under Apple’s Mac OS X system. In addition,
several shareware versions of the program are available for Windows. The goal of the program
is to provide a replacement for the handy sticky notes marketed as Post-itsR©. Basically, all that
the program does is enable you to easily create little windows on your computer’s screen in which
you can type notes to remind yourself of various things. An example of what some of these little
windows might look like is shown in Figure 6.1.

We already know enough to write a program that would create a single window in which a user
could type a short reminder. All we would need to do is place a JTextArea in a program’s window.
We show an example of how the window created by such a program might look in Figure 6.2 and
the code for the program in Figure 6.3.

The people who wrote the Stickies program were obviously afraid that they would be sued by
the 3M company if they named their program “Post-itsR©,” and we are afraid that the people who
wrote Stickies might sue us if we named our version of this program “Stickies.” Accordingly, we
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Figure 6.2: A single reminder window created by running the program shown in Figure 6.3

have given our class the clever name Reminder. Its code is rather trivial. Its constructor simply
creates a window on the screen and then places an empty JTextArea in the window.

When running the actual Stickies program, you can create multiple reminder windows by se-
lecting “New Note” from the File menu. We haven’t discussed how to create programs with File
menus. We can, however, provide an interface that will enable a user to create multiple reminder
windows. In particular, what we can do is write another program named ReminderMaker that dis-
plays a window like the one shown in Figure 6.4. Then, we will place code in the buttonClicked
method of the ReminderMaker program so that each time the button is clicked a new reminder
window of the form shown in Figure 6.2 will appear on the screen.

It is surprisingly simple to write the code that will make new reminder windows appear. We
have seen many examples where we have told the computer to create a new instance of a library
class by using a construction such as

new JButton( "Click Here" );

In all the constructions we have seen, the name following the word new has been the name of
a library class. It is also possible, however, to construct an instance of a class we have defined
ourselves. Therefore, we can construct a new reminder window by executing a construction of the
form

new Reminder()

Based on these observations, the code for the ReminderMaker program is shown in Figure 6.5. This
is a very simple class, but it is also our first example of a class whose definition depends on another
class that is not part of a standard library. The ReminderMaker class depends on our Reminder
class. Thus, in some sense, we should not consider either of these classes to be a program by itself.
In this case, it is the definition of the two classes together that form the program we wanted to
write.

In most integrated development environments, when a program is composed of several classes,
the text of each class is saved in a separate file and all of these files are grouped together as a single
project. In our overview of IDEs in Section 1.4, we showed that after creating a project, we could
add a class definition to the project by either clicking on a “New Class” button or selecting a “New
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// Class Reminder - Creates a window in which you can type a reminder

public class Reminder extends GUIManager {

// The initial size of the windows

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Create a window in which user can type text

public Reminder() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );
contentPane.add( new JTextArea( TEXT_HEIGHT, TEXT_WIDTH ) );

}
}

Figure 6.3: A simple Reminder class definition

Figure 6.4: A window providing the means to create reminders

// Class ReminderMaker - Allows user to create windows to hold brief reminders

public class ReminderMaker extends GUIManager {

// The size of the program’s window

private final int WINDOW_WIDTH = 200, WINDOW_HEIGHT = 60;

// Add the button to the program window

public ReminderMaker() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT );
contentPane.add( new JButton( "Make a new reminder" ) );

}

// Create a new reminder window

public void buttonClicked( ) {
new Reminder();

}
}

Figure 6.5: Definition of the ReminderMaker class
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Figure 6.6: A Reminder window with a summary in the title bar

Class” menu item. For a program that involved multiple user-defined classes, we can simply create
several classes in this way. The IDE will then provide separate windows in which we can edit the
definitions of these classes.

6.2 Constructor Parameters

In most of the constructions we have used, we have included actual parameters that specify prop-
erties of the objects we want to create. For example, in our ReminderMaker class we use the
construction

new JButton( "Make a new reminder" )

rather than

new JButton( )

In the construction that creates new Reminder objects, on the other hand, we have not included any
actual parameters. In this section, we will add some additional features to our Reminder program
to illustrate how to define classes with constructors that expect and use parameter values.

The first feature we will add is the ability to place a short summary of each reminder in the title
bar of the window that displays the complete description. With this change, the windows created
to hold reminders will look like the window shown in Figure 6.6 rather than like that shown in
Figure 6.2.

There are a few things we have to consider before we can actually change our Reminder class
to include this feature. In the first place, we have to learn how to place text in the title bar of a
window. Then, we have to revise the ReminderMaker class to provide a way for the user to enter
the summary that should be displayed in the title bar of each reminder. We will address both of
these concerns together by redesigning the ReminderMaker class so that it both provides a way to
enter a summary and displays a title in its own window.

We will associate new names with the two classes we present in this section to avoid confusing
them with the very similar classes discussed in the preceding section. We will call the revised classes
TitledReminder and TitledReminderMaker.
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Figure 6.7: Revised interface for creating reminders with titles

Within a TitledReminderMaker window, we will place a JTextField that will be used to
enter a topic for each reminder window to be created. We will also get rid of the “Make a new
reminder” button. Instead of creating a new reminder each time a button is pressed, we will create
a new reminder whenever the user presses return after entering a summary. As a result, in the
TitledReminderMaker class, new reminders will be created in the textEntered method rather
than the buttonClicked method. An example of this new interface is shown in Figure 6.7.

If you look carefully at Figure 6.7, you will notice that we have added the title “Reminders” to
the title bar of the ReminderMaker window. This is actually quite easy to do. The createWindow
method accepts a title to place in the new window’s title bar as a third parameter. Therefore, we
can simply add the desired title as a third parameter to the invocation of createWindow as shown
below:

this.createWindow( WINDOW WIDTH, WINDOW HEIGHT, "Reminders" );

The only remaining change to the original ReminderMaker class is that we want this new code
to pass the text of the desired title as a parameter when it constructs a new reminder. We know
that the text to be used will be entered in the JTextField provided in the program’s interface.
Assuming that we associate the name topic with this text field, we can pass the text to the
reminder constructor by saying

new TitledReminder( topic.getText() );

This will require that we design the TitledReminder class so that it expects and uses the actual
parameter information. We will discuss those changes in a moment. Meanwhile, the complete code
for the revised TitledReminderMaker class is shown in Figure 6.8.

We showed in Section 3.4 that by including a formal parameter name in the declaration of a
method, we can inform Java that we expect extra information to be provided when the method exe-
cutes and that we want the formal parameter name specified to be associated with that information.
For example, in the definition of buttonClicked shown below,

public void buttonClicked( JButton clickedButton ) {
entry.setText( entry.getText() + clickedButton.getText() );

}

(which we originally presented in Figure 3.12) we inform Java that we expect the system to tell us
which button was clicked and that we want the formal parameter name clickedButton associated
with that button.

Formal parameter names can be used in a similar way in the definitions of constructors. If we
use the following header when we describe the constructor for the TitledReminder class
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/*

* Class TitledReminderMaker - Make windows to hold reminders

*/

public class TitledReminderMaker extends GUIManager {

// The size of the program’s window

private final int WINDOW WIDTH = 270, WINDOW HEIGHT = 60;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// Add the GUI controls to the program window

public TitledReminderMaker() {

this.createWindow( WINDOW WIDTH, WINDOW HEIGHT, "Reminders" );

contentPane.add( new JLabel( "Topic: ") );
topic = new JTextField( TOPIC_WIDTH );
contentPane.add( topic );

}

// Create a new reminder window when a topic is entered

public void textEntered( ) {
new TitledReminder( topic.getText() );

}
}

Figure 6.8: Code for the TitledReminderMaker class
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public TitledReminder( String titleLabel )

we inform Java that we expect any construction of the form

new TitledReminder( . . . )

to include an actual parameter expression that describes a string, and that the string passed should
be associated with the name titleLabel while the instructions in the body of the constructor are
executed. In particular, we want to use the String passed to the constructor to specify a window
title when we invoke createWindow. With this in mind, the definition for the constructor of the
TitledReminder class would look like:

// Create a window in which user can type text

public TitledReminder( String titleLabel ) {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT, titleLabel );
contentPane.add( new JTextArea( TEXT_HEIGHT, TEXT_WIDTH ) );

}

The only other difference between Reminder and TitledReminder would be the class name.

6.2.1 Parameter Correspondence

We have used actual parameters in many previous examples. We have passed actual parameters in
constructions like

new JTextField( 15 )

and in method invocations like

clickedButton.setForeground( Color.ORANGE );

In all the previous examples in which we have used actual parameters, the parameters have
been passed to methods or constructors defined as part of Squint or the standard Java libraries.
We have learned that there are restrictions on the kinds of actual parameters we can pass to each
such method. For example, we can pass a color to the setForeground method and a number to
the JTextField constructor but not the other way around. If we pass the wrong type of actual
parameter to a library method or constructor, our IDE will produce an error message when we try
to compile the program.

Now we can begin to understand why our parameter passing options have been limited. Java
requires that the actual parameter values passed in an invocation or construction match the formal
parameter declarations included in definitions of the corresponding methods or constructors. If we
are using a method or constructor defined as part of Squint, Swing or any other library, we are
constrained to provide the types of actual parameters specified by the authors of the code in the
library.

Passing the title to be placed in a window’s title bar as an actual parameter to the TitledReminder
constructor is the first time that we have both passed an actual parameter and declared the formal
parameter with which it would be associated. As a result, this is the first example where we can
see that the limitations on the types of actual parameters we can pass are a result of the details of
formal parameter declarations.
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Formal parameter declarations not only determine the types of actual parameters we can pass,
they also determine the number of parameters expected. We have seen that some constructors
expect multiple parameters. In particular, when we construct a JTextArea we have provided
two actual parameters specifying the desired height and width of the text area. We can explore
the definition of constructors that expect multiple parameters by adding another feature to our
reminders program.

The Stickies program installed on my computer provides a menu that can be used to select
colors for the windows it creates. This may not be obvious when you look at Figure 6.1 if you are
reading a copy of this text printed in grayscale, but on my computer’s screen I get to have green
stickies, pink stickies, and purple stickies. When I first create a new window it appears in a default
color. If I want, I can change the default, or I can change an individual window’s color after it has
been created. We can easily add similar features to our Reminders program.

Once again, since we will be working with revised versions of the two classes that comprise
our program, we will given them new names. We will call the new classes ColorfulReminder and
ColorfulReminderMaker. When we create a ColorfulReminder we will want to specify both a
string to be placed in the window’s title bar and the color we would like to be used when drawing
the window. That is, it should be possible to create a ColorfulReminder using a construction of
the form

new ColorfulReminder( "Proposal Due!", Color.RED )

This construction involves two actual parameters. The first is a String. The second a Color.
Accordingly, in the header for the constructor for the ColorfulReminder class we will need to
include two formal parameter declarations. We declare these parameters just as we would declare
single formal parameters, except we separate the declarations from one another with a comma.
Therefore, if we decided to use the names titleLabel and shade for the parameters, the constructor
would look like:

public ColorfulReminder( String titleLabel, Color shade ) {
// Create window to hold a reminder

this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT, titleLabel );

JTextArea body;
body = new JTextArea( TEXT_HEIGHT, TEXT_WIDTH );
contentPane.add( body );

// Set the colors of both the text area and the window that contains it

body.setBackground( shade );
contentPane.setBackground( shade );

}

When multiple formal parameter declarations are included, they must be listed in the same order
that the corresponding actual parameters will be listed. That is, since we placed the declaration of
titleLabel before the declaration of shade, we must place the argument "Proposal Due!" before
Color.RED . If we had used the header

public ColorfulReminder( Color shade, String titleLabel )
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then the construction

new ColorfulReminder( "Proposal Due!", Color.RED )

would be considered an error since the first actual parameter provided is a string while the first
formal parameter declared indicates a Color is expected.

Of course, if we can define a constructor that expects two parameters, it is also possible to define
a constructor that expects even more parameters. For example, if we wanted to make it possible
to change the initial size of reminder windows, we might define a class with the constructor

public FlexibleReminder( int width, int height,
String titleLabel, Color shade ) {

// Create window to hold a reminder

this.createWindow( width, height, titleLabel );

JTextArea body;
body = new JTextArea( TEXT_HEIGHT, TEXT_WIDTH );
contentPane.add( body );

// Set the colors of both the text area and the window that contains it

body.setBackground( shade );
contentPane.setBackground( shade );

}

In this case, we could use a construction of the form

new FlexibleReminder( 400, 300, "Proposal Due", Color.RED )

to construct a reminder window.

6.2.2 Choosing Colors

Including a Color as one of the formal parameters expected by the ColorfulReminder class makes
it possible to set the color of a reminder window when it is first created. As mentioned above,
however, it should also be possible to change a window’s color after it has been created. We will
explore how to add this feature in the next section. To prepare for this discussion, we will conclude
this section by introducing an additional feature of Java’s Swing library, a Swing mechanism that
makes it easy to let a program’s user select a color.

Swing includes a method that can be used to easily display a color selection dialog box. A
sample of this type of dialog box is shown in Figure 6.9. Understanding this figure will require a
bit of imagination if you are reading a grayscale copy of this text. The small squares displayed in
the grid in the middle of the window are all squares of different colors. The mouse cursor in the
figure is pointing at a square that is actually bright yellow. A user can select a color by clicking on
one of the squares and then clicking on the “OK” button.

The method that produces this dialog box is named JColorChooser.showDialog. It expects
three parameters: the name of the program’s GUIManager, typically this, a string to be displayed
as instructions to the user, and the default color to select if the user just clicks “OK”. An invocation
of this method might therefore look like:
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Figure 6.9: Dialog box displayed by the JColorChooser.showDialog(...) method

JColorChooser.showDialog( this, "Select a Color", Color.WHITE )

JColorChooser.showDialog is an accessor method. It returns the color the user selected as its
result.

As an example of the use of JColorChooser.showDialog, the definition of a class designed
to work with the ColorfulReminder class discussed above is presented in Figure 6.10. The user
interface this program provides is shown in Figure 6.11. Like the TitledReminderMaker class, this
user interface allows a user to create a new reminder window by typing the topic for the reminder in
a JTextField and then pressing return. It also provides a button the user can press to select a new
color for the reminder windows. It uses a variable named backgroundColor to remember the color
that should be used for the next reminder window created. This variable is initially associated with
the color white. When the user presses the “Pick a Color” button, the variable is associated with
whatever color the user selects using the dialog box. Each time a new reminder window is created,
the current value of backgroundColor is passed as an actual parameter to the ColorfulReminder
constructor. Therefore, once the user has selected a color, it will be used for all windows created
until a new color is chosen.

6.3 Method Madness

While the revisions we have made to our reminder program make it much more colorful, the program
still doesn’t provide as much flexibility as the Stickies program that inspired it. Our program
provides no way to change a window’s color once it has been created. The Stickies program, on the
other hand, lets you change the color of a window even after it has been created. We will explore
how to add such flexibility to our program as a means of introducing a very important aspect of
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/*

* Class ColorfulReminderMaker - Make windows to hold reminders

*/

public class ColorfulReminderMaker extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// The color to use for the background of the next reminder

private Color backgroundColor = Color.WHITE;

// Add the GUI controls to the program window

public ColorfulReminderMaker() {

this.createWindow( WINDOW WIDTH, WINDOW HEIGHT, "Reminders" );

contentPane.add( new JLabel( "Topic: " ) );
topic = new JTextField( TOPIC_WIDTH );
contentPane.add( topic );
contentPane.add( new JButton( "Pick a Color" ) );

}

// Select a new background color

public void buttonClicked( ) {
backgroundColor = JColorChooser.showDialog( this, "Select a Color",

backgroundColor );
}

// Create a new reminder window

public void textEntered() {
new ColorfulReminder( topic.getText(), backgroundColor );

}
}

Figure 6.10: Complete code for the ColorfulReminderMaker class
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Figure 6.11: User interface of the ColorfulReminderMaker program

writing programs composed of multiple classes, the ability to pass information between objects
through method invocations.

When using library classes, we have seen that in addition to specifying the details of an object
through constructor parameters, we can later modify such details using a method invocation. For
example, in the TouchCounter program presented in Figure 2.10, we specified the initial text
displayed by the label named message in its constructor:

message = new JLabel( "Click the button above" );

Our program later changes its contents to display the number of times the user has clicked using
the setText mutator method:

message.setText( "I’ve been touched " + numberOfClicks + " time(s)" );

The ability to change the contents of a JLabel is provided through the setText method.
Similarly, we can provide the ability to change the color of a ColorfulReminder by including the
definition of an appropriate method within our ColorfulReminder class. Until now, we have only
defined event-handling methods such as buttonClicked, and we have only invoked methods that
were defined within the Squint or Swing libraries. It is, however, possible for us to define methods
other than event-handling methods and then to invoke these methods. Best of all, the process of
defining such methods is very similar to the process of defining an event-handling method.

Like the definition of an event-handling method, the definition of our method to set the color
of a reminder will begin with the words public void followed by the name of the method and
any formal parameter declarations. For this method, we will want just one formal parameter, the
Color to display in the reminder window. We will use the parameter name newShade. Unlike
event-handling methods, we get to pick any name for the method that is appropriate. We could
choose the name setBackground to be consistent with the name of the method provided to set
the color of Swing GUI components, or we could instead chose a different name like setColor or
changeWindowColor. In fact, we could use a name like cuteLittleMethod, but it would be hard
to claim that name was appropriate. To illustrate that we do have the freedom to choose the name,
we will use the appropriate, but not quite standard name setColor for our method. Accordingly,
our method header will be

public void setColor( Color newShade )

A complete class definition incorporating the setColor method is shown in Figure 6.12. Once
again, we have renamed the class to distinguish it from earlier versions. ColorableReminder is
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/*

* Class ColorableReminder - A window you can type a message in

*/

public class ColorableReminder extends GUIManager {
// The size of the reminder window

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Area used to hold text of reminder

private JTextArea body;

// Add GUI components and set initial color

public ColorableReminder( String label, Color shade ) {
// Create window to hold all the components

this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT, label );

body = new JTextArea( TEXT_HEIGHT, TEXT_WIDTH );
contentPane.add( body );

// Set the colors of both the text area and the window that contains it

body.setBackground( shade );
contentPane.setBackground( shade );

}

// Change the color of the window’s background

public void setColor( Color newShade ) {
body.setBackground( newShade );
contentPane.setBackground( newShade );

}
}

Figure 6.12: The code of the ColorableReminder class
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now its name. When the setColor method in this class is invoked, it must set the background
color of both the JTextArea and the contentPane so that the whole window will display a single
color. Accordingly, the name body, which was previously declared as a local variable within the
constructor must now be declared as an instance variable. Unsurprisingly, the body of the setColor
method contains two instructions that are nearly identical to the instructions used to set the color
in the constructor. The only difference is that in this context the name newShade is used as an
actual parameter in the invocations of setBackground.

To illustrate the use of our new setColor method, we will now modify the reminder maker
class. In the new version, which we will name ColorableReminderMaker, when the user picks a
new color, the program will immediately change the color of the last reminder created. The code
for this version of the class is shown in Figure 6.13.

To invoke a method, we have to provide both the name of the method and the name of the
object to which it should be applied. Therefore, to use setColor as we have explained, we have
to associate a name with the last reminder created. We do this by declaring an instance variable
named activeReminder. An assignment within the textEntered method associates this name
with each new reminder window that is created. Then, in the buttonClicked method, we execute
the invocation

activeReminder.setColor( backgroundColor );

to actually change the color of the most recently created window.1 This invocation tells Java to
execute the instructions in the body of our definition of setColor, thereby changing the color of
the window’s background as desired.

In this example, the method we defined expects only a single parameter. It is also possible to
define methods that expect multiple parameters. In all cases, as with constructors, Java will insist
that the number of actual parameters provided when we invoke a method matches the number
of formals declared in the method’s definition and that the types of the actual parameters are
compatible with the types included in the formal parameter declarations. Java will associate the
actual parameter values with the formal parameter names in the order in which they are listed and
then execute the instructions in the method’s body.

6.4 Analyze This

this (pronoun, pl. these )

1. used to identify a specific person or thing close at hand or being indicated or
experienced, as in :

He soon knew that this was not the place for him.

(From the New Oxford American Dictionary (via Apple’s Dictionary program))

Our example program now consists of two classes with very different structures and roles.
Both of the methods defined in ColorableReminderMaker are event-handling methods while the
setColor method in ColorableReminder is not designed to respond to user events. The ColorableReminderMaker

1To ensure that we don’t try to change the color of the most recently created reminder before any reminders have
been created at all, we don’t enable the “Pick a Color” button until after a reminder has been created.
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// Class ColorableReminderMaker - Make windows to hold reminders

public class ColorableReminderMaker extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// Used to change the color of new reminder backgrounds

private JButton pickColor;

// The color to use for the background of the next reminder

private Color backgroundColor = Color.WHITE;

// The most recent reminder created

private ColorableReminder activeReminder;

// Add the GUI controls to the program window

public ColorableReminderMaker() {
this.createWindow( WINDOW WIDTH, WINDOW HEIGHT, "Reminders" );

contentPane.add( new JLabel( "Topic: " ) );
topic = new JTextField( TOPIC_WIDTH );
contentPane.add( topic );
pickColor = new JButton( "Pick Background Color" );
pickColor.setEnabled( false );
contentPane.add( pickColor );

}

// Select a new background color for current and future reminders

public void buttonClicked( JButton which ) {
backgroundColor = JColorChooser.showDialog( this, "Select a Color",

backgroundColor );
activeReminder.setColor( backgroundColor );

}

// Create a new reminder window

public void textEntered() {
activeReminder = new ColorableReminder( topic.getText(), backgroundColor );
pickColor.setEnabled( true );

}
}

Figure 6.13: Complete code for the ColorablelReminderMaker class
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creates ColorableReminders and tells them what to do through method invocations (i.e., when to
change color). The ColorableReminderMaker acts as the boss and the ColorableReminders just
listen passively.

In the following section, we will see that it is possible for the communications that occur between
objects of different classes to be much more interesting. By the end of the next section, both of the
classes in our program will include methods designed to handle events and methods like setColor
that do not handle events but are instead invoked explicitly by code in the other class. We will
begin the construction of this version of the program by making a rather small change to the
ColorableReminder class. We will make it talk to itself!

The code in the ColorableReminder constructor is designed to perform three steps:

1. Create an empty window,

2. Place a text area in the window, and

3. Set the background color used.

The setColor method that we added to the class in the last section is designed to perform the third
of these steps. Therefore, it should be possible to replace the last two invocations in the constructor
with a single invocation of the setColor method. Recall, however, that when we invoke a method
we need to provide both the name of the method and the name of the object to which it should be
applied. What name should we use within the constructor to tell Java that we want to apply the
setColor method to the object being constructed?

The answer to this question is actually apparent if we look at the first line of the constructor’s
body. In that line we invoke the createWindow object using the name this. By writing such an
invocation, we are telling Java that we want the object being created to create a window for itself.
That is, we are applying the createWindow method to the object being constructed. The name
this can be used in a constructor to refer to the object being constructed or within a method to
refer to the object to which the method is being applied. Thus, we can replace the last two lines
of the ColorableReminder constructor with the invocation

this.setColor( shade );

6.5 Talking Back

The name this can also be used as a parameter in a construction or method invocation. When
this is done, the object executing the code containing the construction or invocation is passed as
an actual parameter. This provides a way for one object to identify itself to another, making it
possible for the other object to communicate with it later.

To illustrate how the name this can be used to facilitate such two-way communications, we
will modify our Reminder program to make it even more like the Stickies program. Our program
currently only provides a way to change the color of the most recent reminder created. On the
other hand, it is possible to change the color of any window created by the Stickies program at
any time. The interface provided by Stickies is quite simple. When the user clicks on any window,
it becomes the active window. When the user selects a color from the color menu, the program
changes the color of the active window rather than of the most recently created window.
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Obviously, implementing this behavior will require some modifications to our example classes.
Accordingly, we will once again give the new versions new names. This time we will call them
ReactiveReminder and ReactiveReminderMaker.

Like the Stickies program, our program already has some notion of an “active window”. If you
create several reminder windows and then start typing text, the text you type will appear in one
of your reminder windows. If you want to change which window your text appears in, you merely
have to click on a different window. After you click, text you type will be inserted in the window
you just clicked on. That window is now the active window. In the terminology of Java’s Swing
library, we say that the window you clicked on has gained the focus.

There is an event handling method that you can define if you want to take some special action
when your window gains the focus. The method is named focusGained. If you include a method
definition of the form

public void focusGained() {
. . .

}

within a class that extends GUIManager then the instructions in the body of the method will be
executed whenever one of the GUI components in the GUIManager’s content pane gains the focus.
When you click on a reminder window, the JTextArea in the window gains the focus. Therefore,
if we include a definition of focusGained in our reminder class, it will be executed when the user
clicks on a reminder window.

This is a start. It means that it is possible for a reminder window to become aware that it has
become the active window. Unfortunately, this is not enough. To change the color of a reminder
window, the user will click on the “Pick a Color” button in the reminder maker window. To actually
change a reminder’s color, the reminder maker needs to invoke setColor on the active window.
Therefore, it isn’t enough for a reminder to know that it is active. Somehow, a reminder needs a
way to tell the reminder maker that it has become the active window.

One object can provide information to another object by invoking one of the methods associated
with the other object and passing the information as an actual parameter. We have already seen
the reminder maker pass information to a reminder by invoking setColor. Now, we have to define
a method in the reminder maker that a reminder can invoke to tell the reminder maker that it
has become the active window. We will call this method reminderActivated. We will invoke this
method from the body of the focusGained method in the reminder class. It will expect to be passed
the window that has become active as a parameter when it is invoked. It will simply associate the
name activeReminder with this parameter so that the reminder maker can “remember” which
window is now active. Therefore, we will define reminderActivated as follows:

// Notice when the active reminder window is changed

public void reminderActivated( ReactiveReminder whichReminder ) {
activeReminder = whichReminder;

}

We know that the invocation of reminderActivated that we place in the reminder class must
look something like:

x.reminderActivated( y );
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The interesting part is deciding what to actually use where we have written “x” and “y”.
Here “y” represents the actual parameter that should be passed when reminderActivated is

invoked. We said that we needed to pass the reminder that was becoming active to the reminder
maker. This is the same as the window that will be executing the focusGained method. Therefore,
we can use the name this to refer to the window. Now we know that our invocation must look like

x.reminderActivated( this );

We will also use this to determine the correct replacement for “x”. The problem is that
whatever we use for “x” should refer to the reminder maker, not a reminder window. If we use the
name this within the ReactiveReminder class, it will refer to a reminder window, but if we use it
within the ReactiveReminderMaker class it will refer to the reminder maker. The solution, then,
is to pass this from the reminder maker in each reminder construction it executes. If we view the
parameters to the constructor as a message sent to the new object, including this in the list is like
putting a return address on the envelope. It tells the new object who created it.

To accomplish this, we first have to both add this as an actual parameter in the construction:

activeReminder = new ReactiveReminder( topic.getText(), backgroundColor,
this );

and add a formal parameter declaration that associates a name with the extra parameter in the
header of the constructor for the ReactiveReminder class;

public ReactiveReminder( String label, Color shade,
ReactiveReminderMaker creator ) {

At this point, we are close, but not quite done. The name creator can now be used to refer to
the reminder maker within the reminder constructor. Formal parameter names, however, can only
be used locally within the constructor or method with which they are associated. Therefore, we
cannot use the name creator to refer to the reminder maker within the body of focusGained.

To share information between a constructor and a method (or between two distinct invocations
of methods) we must take the information and associate it with an instance variable. We will
do this by declaring an instance variable named theCreator and associating it with the reminder
maker by executing the assignment

theCreator = creator;

within the body of the constructor. Then, we can place the invocation

theCreator.reminderActivated( this );

in the focusGained method. A complete copy of the revised classes can be found in Figures 6.14
and 6.15.

Both of the classes in this version of the program include methods that are designed to handle
GUI events and other methods that are invoked explicitly within the program itself. ReactiveReminder
defines the event-handling method focusGained in addition to the simple mutator method setColor.
The ReactiveReminderMaker class included two methods that handle GUI events, textEntered
and buttonClicked, in addition to the reminderActivated method which is invoked by code in
the ReactiveReminder class.
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/*

* Class ReactiveReminder - A window you can type a message in

*/

public class ReactiveReminder extends GUIManager {
// The size of the reminder window

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Area used to hold text of reminder

private JTextArea body = new JTextArea( TEXT_HEIGHT, TEXT_WIDTH );

// The ReactiveReminderMaker that created this reminder

private ReactiveReminderMaker theCreator;

// Add GUI components and set initial color

public ReactiveReminder( String label, Color shade,
ReactiveReminderMaker creator ) {

// Create window to hold all the components

this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT, label );

theCreator = creator;
contentPane.add( body );
this.setColor( shade );

}

// Change the color of the window’s background

public void setColor( Color newShade ) {
body.setBackground( newShade );
contentPane.setBackground( newShade );

}

// Notify the manager if the user clicks on this window to make it active

public void focusGained() {
theCreator.reminderActivated( this );

}
}

Figure 6.14: Code for the ReactiveReminder class
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// Class ReactiveReminderMaker - Make windows to hold reminders
public class ReactiveReminderMaker extends GUIManager {

// The size of the program’s window
private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Used to enter description of a new reminder
private JTextField topic = new JTextField( 15 );

// Used to change the color used for new reminder backgrounds
private JButton pickColor = new JButton( "Pick a Color" );

// The color to use for the background of the next reminder
private Color backgroundColor = Color.WHITE;

// The most recent reminder created
private ReactiveReminder activeReminder;

// Add the GUI controls to the program window
public ReactiveReminderMaker() {

this.createWindow( WINDOW WIDTH, WINDOW HEIGHT, "Reminders" );

contentPane.add( new JLabel( "Topic: " ) );
contentPane.add( topic );
pickColor.setEnabled( false );
contentPane.add( pickColor );

}

// Select a new background color for current and future reminders

public void buttonClicked() {
backgroundColor = JColorChooser.showDialog( this, "Select a Color",

backgroundColor );
activeReminder.setColor( backgroundColor );

}

// Create a new reminder window

public void textEntered() {
activeReminder = new ReactiveReminder( topic.getText(), backgroundColor,

this );
pickColor.setEnabled( true );

}

// Notice when the active reminder window is changed

public void reminderActivated( ReactiveReminder whichReminder ) {
activeReminder = whichReminder;

}
}

Figure 6.15: Code for the ReactiveReminderMaker class
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It is worth observing that if you look at just the code for the ReactiveReminderMaker class,
the reminderActivated method might easily be mistaken for an event handling method. Like the
other two methods in this class, the instructions in its body are designed to make the program
react to a user action appropriately. The only reason we distinguish the other two methods from
reminderActivated is that buttonClicked and textEntered are executed by some mysterious
mechanism in the Java system while reminderActivated is executed when the code we wrote in
ReactiveReminder explicitly invokes it. We point this out to make the “mysterious mechanism”
less mysterious. Just as we explicitly invoke reminderActivated, it should now be clear that
somewhere in the code of the Squint or Swing library there are statements that explicitly invoke
textEntered and buttonClicked. There is really no fundamental difference between an event-
handling method and any other method we define.

6.6 Defining Accessor Methods

In Chapter 3 we introduced the distinction between mutator methods and accessor methods. Any
method whose purpose is to change some aspect of an object’s state is classified as a mutator
method. For example, because the setText method changes the contents of a GUI component, it
is classified as a mutator. Similarly, the setColor method we defined in our reminder class would
be classified as a mutator method. Accessor methods serve a different role. An accessor method
provides a way to obtain information about an object’s state. The getText and getSelectedItem
methods are good examples of accessor methods.

The two examples of methods presented so far in this chapter, setColor and reminderActivated,
are both examples of mutator methods. One changes a clearly visible property of an object, its
color. The other changes the reminder associated with the variable activeReminder within the
reminder maker. While this change is not immediately visible, it does determine how the program
will react the next time the user presses the “Pick a Color” button.

Our goal in this section is to introduce the features used to define accessor methods. We will
use a very simple example. If we have a setColor method in our reminder class, it might be handy
to have a getColor method. In fact, introducing such a method will enable us to fix a rather subtle
flaw in the current version of our program.

If you look back at the invocation that causes the color selection dialog box to appear:

backgroundColor = JColorChooser.showDialog( this, "Select a Color",
backgroundColor );

you will notice that most of the actual parameters included in this invocation are rather mysterious.
The second parameter is the only obvious one. It determines what prompt the user will see in the
dialog box. The first parameter is included because each dialog box created by Swing must be
associated with some existing window on the screen. In this context, this refers to the reminder
maker window. The last parameter is the one we are really interested in. The color dialog is
typically used to change something’s color. The third parameter is supposed to specify the color
you are starting with. This enables the system to include a patch of the original color in the dialog
box so that the user can compare it to the alternative being chosen.

As currently written, our program isn’t really using this third parameter correctly. The name
backgroundColor in our program will be associated with the background color of the last window
whose color was changed. This may not be the same as the background color of the currently active
window.
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If there was a getColor method defined in the ReactiveReminder class we could fix this problem
quite easily. Since the variable activeReminder is always associated with the active window, we
could rewrite the invocation that creates the color chooser dialog as:

backgroundColor = JColorChooser.showDialog( this, "Select a Color",
activeReminder.getColor());

Now, all we have to do is actually define the getColor method!
The process of defining an accessor method is very similar to that of defining a mutator method.

We must write a header including the name of the method and declarations of any formal parameters
it expects. We also write a body containing a list of instructions to be executed when the method
is invoked. The difference is that the purpose of the instructions we write will be to determine what
information to return as the “answer” to the question being asked when the method is invoked.
Java therefore requires that the definition of an accessor method contains two special components.
The first describes the type of the information that will be returned as an answer. The second
specifies the actual answer to be returned.

The specification of the type of the answer produced by an accessor method appears in its
header. In all of the method definitions we have seen, the second word has been void. This
actually describes the information the method will return. A mutator method returns void, that
is, nothing. In the definition of an accessor method, we will replace void with the name of the type
of information the method is designed to produce. This type is called the method’s return type For
example, since getColor should obviously produce a Color, its header will look like

public Color getColor() {

In addition, somewhere in the instructions we have to explicitly tell Java what answer our
method should return to the code that invoked it. This is done by including an instruction of the
form

return expression;

in the method body. The value or object described by the expression in the return statement will
be used as the result of the invocation. For example, to return the color of a reminder, we could
use the return statement

return contentPane.getBackground();

or

return body.getBackground();

Therefore, the complete definition of the setColor method might be

public Color getColor() {
return contentPane.getBackground();

}

When a return statement is executed, the computer immediately stops executing instructions
in the method’s body and returns to executing instructions at the point from which the method
was invoked. As a result, a return statement is usually included as the last statement in the body
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of an accessor method. return statements may be included at other points in a method’s body, but
the last statement executed by an accessor method must be a return. In our example, this is not
an issue since the return statement is actually the only statement in the body. This is because it is
very easy to determine the color of a reminder. If a more complicated process that involved many
statements was required, all these statements could appear in the body of our method followed by
a return.

6.7 Invisible Objects

Most of the objects we have considered thus far appear as something concrete and visible on your
computer screen. When you say

contentPane.add( new JButton( "Click Me" ) );

you know that you made the computer construct a new button because you can see it on the screen.
It is important to realize, however, that it is possible to create an object that never becomes visible.
For example, if you create a button by saying

JButton invisibleButton;
invisibleButton = new JButton( "Click Me" );

and don’t say

add( invisibleButton );

Java still has to create the button even though you can’t see it. Somewhere inside the computer’s
memory, Java keeps information about the button because it has to remember what the button is
supposed to look like in case you eventually do add it to your content pane. For example, if you
execute the statement

invisibleButton.setText( "Click me if you can" );

Java has to have some way to record the change even though it doesn’t have any visible effect.
Invisible buttons are clearly not very useful. The idea that creating an object forces Java to

keep track of information about the object even if it isn’t visible, on the other hand, is very useful
and important. In this section, we will explore an example in which we define a class of objects that
will never be visible on the screen. They will be used to record information that will be displayed,
but the objects themselves will remain invisible.

It probably will come as no shock that the example we have in mind is yet another variant of the
Reminders program. The good news is that this variant will be very different from the programs
we have presented in the preceding sections.

The idea is that a program to keep track of a set of reminders doesn’t need to have a separate
window to display each reminder. An alternate interface would be to have a single window that
could display the contents of one reminder together with a menu from which one could select any
of the reminders when one wanted its contents to be displayed. To make this concrete, Figure 6.16
shows how information might be presented by such a program.

The snapshot presented in Figure 6.16(a) shows how the program would look while a user was
simply examining one reminder. Figure 6.16(b) shows how the user would request to see the
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(a) (b)

(c) (d)

Figure 6.16: An alternate interface for viewing reminders
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contents of a different reminder. When the mouse is depressed on the menu in the window, a list of
the topics of all the reminders would be displayed. The user could select any item in the list. If the
user selected the second item as shown in Figure 6.16(b), then, when the mouse was released, the
program would display the contents of the selected reminder as shown in Figure 6.16(c). Whenever
a given reminder was displayed, the user could edit the contents of the text field and text area
displayed in the window to update, correct, or extend the information previously entered. In
particular, as shown in Figure 6.16(d), if the user clicked on the “New Reminder” button, the
program would display a reminder with a default topic such as “Reminder 4”. The user could
then edit the topic and contents to include the new reminder in the collection maintained by the
program.

In the previous versions of the reminder program, a Reminder2 was actually a window displayed
on the screen that contained a text area in which the desired text was displayed. If the program
was keeping track of four reminders, there would be four windows displayed.

In this new version of the program, a reminder will not itself correspond to anything visible
on the screen. The program displays one text field and one text area. At various times these two
components are used to display the text of various reminders, but when we create a new reminder,
the program does not create and display a new text area or text field. It just uses setText to
change what an existing component displays. A reminder is no longer a window or even a GUI
component. A reminder is just a pair of strings. Basically, a reminder is a piece of information,
not the means used to display it.

It is still very useful, however, to define a Reminder class so that we can create objects to
represent the contents of various reminders. The definition of such a class is shown in Figure 6.17.

The new class is named InvisibleReminder. It differs from all the other classes we have defined
so far in a very significant way. Every other class we have seen has included the phrase extends
GUIManager in its header. This class does not. The phrase extends GUIManager indicates that a
class definition describes how to respond to GUI components within a window. As we have seen,
each time we construct an object of a class that extends GUIManager, we end up with a new window.
Since this class does not extend GUIManager, creating a new InvisibleReminder will not create a
new window. In fact, it you try to reference the contentPane or invoke this.createWindow(...)
within such a class, your IDE will identify that code as an error.

The fact that we cannot see an InvisibleReminder does not mean that it is impossible to write
a program that displays its contents. Within the definition of the class, we have included accessor
methods that make it possible to determine what the contents of a given reminder are. To construct
a program to provide an interface like that shown in Figure 6.16, we would define a second class
that would build a GUI interface including a text field and a text area. Within the code of that
class, we would associate names with the text field, text area, and the InvisibleReminder the
user had most recently selected from the menu. This class could then use the accessor methods
associated with an InvisibleReminder together with the setText method to display a reminder.
In particular, assuming that the text field is named topic, the text area is named reminder, and
the InvisibleReminder is named currentReminder, we could display the desired information by
executing the instructions

topic.setText( currentReminder.getLabel() );

2Even though we used a variety of names to distinguish various versions of our reminder class from one another, we
now use the name of the original version of the class, Reminder, to refer to all of the versions since we are discussing
properties shared by all the variations of the class we presented.
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/*

* InvisibleReminder --- Holds the contents and summary of a reminder

*/

public class InvisibleReminder {

// The strings that make up the contents of the reminder

private String label;
private String body;

// Turn a pair of strings into a reminder

public InvisibleReminder( String myLabel, String myBody ) {
label = myLabel;
body = myBody;

}

// Get the short summary of a reminder’s contents

public String getLabel() {
return label;

}

// Get the full details of a reminder

public String getBody() {
return body;

}

// Change the strings that are the contents of a reminder

public void setContents( String myLabel, String myBody ) {
label = myLabel;
body = myBody;

}
}

Figure 6.17: The definition of the InvisibleReminder class
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reminder.setText( currentReminder.getBody() );

The only subtle aspect of constructing such a program is arranging to have the currentReminder
variable associated with the latest menu item selected by the user. While perhaps subtle, this is
actually quite easy if we take full advantage of the flexibility provided by the JComboBox class
defined within Swing.

In all of our previous examples that used JComboBoxes, all the items we added to the menu
were strings. When we discussed JComboBoxes, however, we explained that Swing would let us add
objects other than strings to a menu. That is why Java insists that we say

someJComboBox.getSelectedItem().toString()

rather than simply saying

someJComboBox.getSelectedItem()

when we want to get the string a user has selected from a menu. If a menu contains items other
than strings,

someJComboBox.getSelectedItem()

may return something other than a string. In particular, if we use the addItem method to place
InvisibleReminders in a JComboBox, then when we execute

someJComboBox.getSelectedItem()

the value returned will be an InvisibleReminder.
Unfortunately, just as Java will not let us assume that getSelectedItem will return a string,

it will not let us assume it returns an InvisibleReminder. We must tell it explicitly to treat the
item selected in the menu as an InvisibleReminder. There is no toInvisibleReminder method
to accomplish this. Instead, there is a form of expression called a type cast that provides a general
way to tell Java that we want it to assume that the values produced by an expression will have a
particular type.

A type cast takes the form

( type-name ) expression

That is, we simply place the name of the type of value we believe the expression will produce in
parentheses before the expression itself. In the case of extracting an InvisibleReminder from a
menu, we might say

currentReminder = (InvisibleReminder) reminderMenu.getSelectedItem();

While we no longer use the toString method when we invoke getSelectedItem, the toString
method still plays an important role when we want to build a menu out of items that are not
Strings. If we build a menu by adding InvisibleReminders as items to the menu, Java still needs
some way to display strings that describe the items in the menu. To make this possible, it assumes
that if it applies the toString method to any object we add to a JComboBox, the result returned
will be the string it should display in the menu. Right now, our definition of InvisibleReminder
does not include a definition of toString, so this will not work as we desire. We can fix this by
simply adding the defintion
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public String toString() {
return this.getLabel();

}

to our InvisibleReminder class.
To illustrate these ideas, a complete definition of a ReminderViewer class that would provide

an interface like that shown in Figure 6.16 is presented in Figures 6.18 and 6.19.
In all of our previous examples of code, we have avoided the use of initializers in instance

variable and local variable declarations. As we explained in Section 2.6, we did this to ensure
that you learned to clearly distinguish the roles of declarations and assignments in Java. In this
example and the remainder of the examples we present in this text, however, we will assume that
you are comfortable enough with the use of declarations and assignments that we can begin to use
initializers without confusion. In particular, you will note that in this example we use initializers
to create the GUI components named reminderMenu, topic, and reminder.

Begin by looking at the code for the menuItemSelected method in Figure 6.19. When the
user selects a new item from the menu, this ensures that the contents of the selected reminder
are displayed. As explained above, we want to allow the program’s user to update the text of a
reminder while it is displayed. Therefore, the first step in this method is designed to make sure
any such changes are recorded. It uses the setContents mutator method to replace the previous
contents of the reminder with the text found in the text field and text area. Next, the method uses
a type cast with the getSelectedItem method to associate the newly selected reminder with the
currentReminder variable. Finally, it displays the contents of the reminder using the getLabel
and getBody methods.

Once this method’s function is understood, it should be quite easy to understand the code in the
buttonClicked method. Like menuItemSelected, it begins by saving any updates to the currently
displayed reminder. Then it creates a new reminder with a default label of the form “Reminder
N”. It displays the (not very interesting) initial contents of the reminder in the text field and text
area. Then it adds the new reminder to the menu.

The interesting thing about this program is how important the role played by the InvisibleReminder
class is even though we never actually see an InvisibleReminder on our screen. In our introduc-
tion to Java, we have deliberately focused our attention on classes that describe objects that have
a visible presence on the screen. We believe that starting with such objects makes it easier to
grasp programming concepts because “seeing is believing.” As you learn more about programming,
however, you will discover that the most interesting classes defined in a program are often the ones
you cannot see. They represent abstract information that is critical to the correct functioning of
the program, even though they may not have any simple, visual representation.

6.8 Private Parts

We have already noted that it is possible for the code we place in the body of a method or constructor
within a class to invoke another method defined in the same class. We saw in Section 6.4 that we
could use the invocation

this.setColor( shade );

within the constructor of the ColorableReminder class. In some cases, in fact, it is worth writing
methods that are only invoked from code in the class in which they are defined. When we are
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// Class ReminderViewer - Provide menu-based access to a collection

// of reminder notes through a single window

public class ReminderViewer extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 6;

// Menu used to select reminder to view/edit

private JComboBox reminderMenu = new JComboBox();

// Field used to enter, display, and edit reminder topics

private JTextField topic = new JTextField( TEXT_WIDTH );

// Text Area used to enter, display and edit reminder messages

private JTextArea reminder = new JTextArea( TEXT_HEIGHT, TEXT_WIDTH );

// Count of the number of reminders created so far

private int reminderCount = 0;

// The current reminder

private InvisibleReminder currentReminder;

// Place button, menu, a summary field, and a text area in a window

public ReminderViewer() {
this.createWindow( WINDOW_WIDTH, WINDOW_HEIGHT, "Reminders" );

// Create a new Reminder

reminderCount = reminderCount + 1;
currentReminder = new InvisibleReminder( "Reminder "+reminderCount, "" );
reminderMenu.addItem( currentReminder );

// Display contents of new reminder

topic.setText( currentReminder.getLabel() );

// Add all the GUI components to the display

contentPane.add( reminderMenu );
contentPane.add( topic );
contentPane.add( reminder );

contentPane.add( new JButton( "New Reminder" ) );
}

Figure 6.18: Variable and constructor for the ReminderViewer class
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// Save the current reminder contents and create a new reminder

public void buttonClicked( ) {
// Save changes made to current reminder

currentReminder.setContents( topic.getText(), reminder.getText() );

// Create a new reminder

reminderCount = reminderCount + 1;
currentReminder = new InvisibleReminder( "Reminder "+reminderCount, "" );

// Display contents of new reminder

topic.setText( currentReminder.getLabel() );
reminder.setText( currentReminder.getBody() );

// Change menu to select new reminder

reminderMenu.addItem( currentReminder );
reminderMenu.setSelectedItem( currentReminder );

}

// Save the current reminder and display the reminder selected from menu

public void menuItemSelected() {
// Save changes made to current reminder

currentReminder.setContents( topic.getText(), reminder.getText() );

// Access reminder selected through menu

currentReminder = (InvisibleReminder) reminderMenu.getSelectedItem();

// Display conents of new reminder

topic.setText( currentReminder.getLabel() );
reminder.setText( currentReminder.getBody() );

}
}

Figure 6.19: Method definitions for the ReminderViewer class
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trying to understand a large program composed of many classes, it is useful to be able to easily
distinguish those parts of a class definition that are relevant to other classes from those that are
only of local interest. We do this by using the word private. By placing the word private before
variable declarations in our classes, we are saying that they can only be used within the class in
which they are defined. Similarly, if we find that we want to define a method that is only intended
for use within its own class, then that method should be declared as private rather than public.

The ReminderViewer class presented in the last section provides a good example to illustrate
the usefulness of such private methods. If you compare the steps performed by the buttonClicked
and menuItemSelected methods, you will notice that they have a lot in common. They both start
with the instruction

currentReminder.setContents( topic.getText(), reminder.getText() );

and they both end with the statements

topic.setText( currentReminder.getLabel() );
reminder.setText( currentReminder.getBody() );

It would be nice if we could avoid repeating these statements in two methods. Doing so would
obviously save us a little typing time. It might also make our program easier to modify. If we
decided later that we wanted to display the contents of a reminder in some different way (perhaps
concatenated together in a single text area rather than in two components), we would currently
have to change both copies of the instructions at the ends of these methods. Having only one copy
to change would make things easier and decrease the likelihood of making errors while incorporating
such changes.

The best way to approach the task of eliminating such repeated code is not just to look for
repetition, but to try to find a logical, abstract way to describe what the original code is doing.
This will often enable one to identify good ways to regroup statements into separate methods.

In this situation, one way to describe what these two methods have in common is that they
both seek to replace the currently displayed reminder. The function of the buttonClicked method
can be summarized as:

1. Create a new reminder

2. Replace the currently displayed reminder with the new reminder

The function of the menuItemSelected method can be described as

1. Identify the item currently selected in the menu

2. Replace the currently displayed reminder with the selected reminder

Apparently, the task of replacing the displayed reminder is a common element of both of these
processes. Therefore, it might help to define a private replaceReminder method to perform this
task. It would be defined to take the new reminder as a parameter so that it would be possible to
either pass it a newly created reminder or a reminder selected through the menu.

In Figure 6.20 we provide a definition for replaceReminder together with revised versions of
buttonClicked and menuItemSelected that use this private method. The code in this figure
would serve as a replacement for the code shown in Figure 6.19. You may notice that it isn’t clear
that eliminating the repeated code has really reduced the amount of typing that would be required
to enter this program. Eliminating such repetition, however, is usually worthwhile simply because
it can simplify the process of debugging new code and the process of modifying existing code.
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// Replace the currently displayed reminder with a different reminder

private void replaceReminder( InvisibleReminder replacement ) {
// Save changes made to current reminder

currentReminder.setContents( topic.getText(), reminder.getText() );

currentReminder = replacement;

// Display contents of new reminder

topic.setText( currentReminder.getLabel() );
reminder.setText( currentReminder.getBody() );

// Change menu to select new reminder

reminderMenu.setSelectedItem( currentReminder );
}

// Save the current reminder contents and create a new reminder

public void buttonClicked( ) {
// Create and display a new reminder

reminderCount = reminderCount + 1;
InvisibleReminder newReminder =

new InvisibleReminder( "Reminder " + reminderCount, "" );
reminderMenu.addItem( newReminder );
this.replaceReminder( newReminder );

}

// Save the current reminder and display the reminder selected from menu

public void menuItemSelected() {
// Access reminder selected through menu and display its contents

this.replaceReminder( (InvisibleReminder) reminderMenu.getSelectedItem() );
}

Figure 6.20: Using the private method replaceReminder
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6.9 Summary

In the preceding chapters, much of the functionality of the programs we constructed depended on
classes like JTextArea and NetConnection provided as part of Java libraries. These classes define
types of objects that play important roles as components of the programs we have written. In this
chapter, we showed that we can define classes of our own to implement components of our programs
that do not correspond to types already available in the libraries.

When we use these mechanisms to decompose our program into separate components, it is
usually necessary for the components to exchange information as the program executes. This can
be accomplished in several ways. The methods and constructors we define can be designed to accept
information they need as parameters. We also showed that by associating information received as a
parameter value with an instance variable name a method or constructor can make that information
directly accessible to other methods within its class.

Accessor methods provide another means for information to flow from one class to another.
When an accessor method is defined, it is necessary to specify both the type of information the
accessor method will produce in its header and the particular value to be returned using a return
statement.

While it is often essential to exchange information between classes, another important role of
classes is to limit the flow of information. One goal of decomposing our program into separate
classes is to make each class as independent of the detailed information maintained by other classes
as possible. This can make programs much easier to construct, understand, and maintain. With
this in mind, we stressed the importance of private components of classes. In general, all variables
declared in a class should be private, and any method that is designed only to be used by other
methods within its own class should also be private.
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