
Chapter 3

Variable Length Codes

In Section 2.1, we pointed out that using varying length sequences of digits
to encode letters of the alphabet can get us into trouble. We then focused
our attention on schemes that used a fixed number of digits to represent
each letter. Fixed length codes are indeed very important. As we have seen,
ASCII, the most widely used code for representing text in computer systems,
is a fixed length code. With care, however, it is possible to design a viable
code in which the number of digits used to encode letters varies. Such codes
are used in many applications because they can be more efficient than fixed
length codes. That is, the number of digits required to represent a given
message with a variable length code is often smaller that what would be
required if a fixed length code were used. In this chapter, we will explore
the use of variable length codes. As we did in the preceding section, we will
begin by considering codes based on using the 10 decimal digits. Then, after
illustrating the underlying ideas with such examples, we will discuss the use
of binary codes with variable length codewords.

3.1 Unique Decoding

In Section 2.1, we considered a scheme in which the first nine letters of
the alphabet were represented by the single digits 1 through 9, while the
remaining letters were represented by pairs of digits corresponding to the
numbers 10 through 26 as shown below.

25



26 CHAPTER 3. VARIABLE LENGTH CODES

1. a 11. k 21. u
2. b 12. l 22. v
3. c 13. m 23. w
4. d 14. n 24. x
5. e 15. o 25. y
6. f 16. p 26. z
7. g 17. q
8. h 18. r
9. i 19. s

10. j 20. t

We showed two possible interpretations for the sequence of digits “211814”
under this scheme. If the first digit is interpreted as a “b”, then the code
appears to represent the word “barn”. On the other hand, if the first two
digits are interpreted as the code for “u”, then the code appear to represent
“urn”.

Actually, there are many possible interpretations of “211814”. The mid-
dle digits, “18”, can be interpreted as a single “r”, or as the pair of letters
“ah”. The final digits, “14”, could be interpreted as “n” or “ad”. As a re-
sult, the sequence “211814” could represent “barn”, “urn”, “bahn”, “uahn”,
“barad”, “urad”, “baahad”, or “uahad”. “Barn” and “urn” are the only in-
terpretations that correspond to English words, but “bahn” is a word in
German and several of the other possible interpretations are used as proper
names. (Just use them as search terms in Google.)

By way of contrast, consider the interpretation of the sequence “5105320”.
Since the pair “51” is not used as a codeword in our scheme, the first digit
must stand for the letter “e”. If we try to interpret the following “1” as an
“a”, then the next codeword would start with “0”. There are no codewords
that start with “0”, so we must interpret the “1” as part of the two digit
codeword “10” which stands for “j”. Again, there are no two digit codes
that start with “5” or “3”, so the next two letters must be “ec”. Finally,
the last two digits can only be interpreted as “t” so the encoded word must
be “eject”. In this case, there are no alternatives. We say that such a coded
message is uniquely decodable.

The coded message “5105320” is uniquely decodable because the code-
words used have properties that make it possible to determine the boundaries
between codewords without either using delimiters or fixed length codes. For
example, the fact that no codeword used in our scheme begins with “0” en-
ables us to recognize that the sequences “10” and “20” must be interpreted
as two digit codewords. With care, we can design coding schemes that use



3.2. EXPLOITING SYMBOL FREQUENCIES 27

variable length codewords selected to ensure that all coded message can be
decoded in only one way. That is, we can design variable length coding
schemes that are uniquely decodable.

Exercises.

1. In fact, our list of possible interpretations of “211814” is
still incomplete. There are more than eight. Find as many
additional ways to interpret “211814” using the coding ta-
ble shown above as you can. Hint: The remaining interpre-
tations may be even less word-like than the eight we have
identified.

2. We showed that the coded message produced for the word
“eject” was uniquely decodable. Find another example of
an English word that produces a coded message that is
uniquely decodable.

When analyzing the coded message “5105320”, we determined that the
digits “5” and “3” had to be interpreted as single digit codewords because
the scheme we were using did not include any two digit codewords that
began with “5” or “3”. With just a few changes to our coding scheme,
we can ensure that a similar rule can be used to distinguish all single digit
codewords from two digit codewords.

In our original scheme, the two digit codewords all begin with either “1”
or “2”. Thus, the only single digit codewords that can cause confusion are
those used for “a” and “b”. If we replace the codes for “a” and “b” with two
digit codes as shown in Figure 3.1 these sources of confusion are removed.

Now, “barn” is encoded as “28271814” while “urn” is encoded as “211814”
and each of these codes is uniquely decodable. In fact, any codeword pro-
duced using our new scheme is certain to be uniquely decodable. Therefore,
even though this is a variable length code, it can be used to encode messages
without requiring any additional delimiters to separate codewords.

Our revised code is an example of a prefix-free code. We say that a
coding scheme is prefix-free if no codeword used in the scheme appears as
a prefix of any other codeword. Any coding scheme that is prefix-free is
guaranteed to produce coded messages that are uniquely decodable.

3.2 Exploiting Symbol Frequencies

The possibility of using variable length codewords is of interest because a
variable length code may require fewer symbols to represent a message than a



28 CHAPTER 3. VARIABLE LENGTH CODES

27. a 11. k 21. u
28. b 12. l 22. v
3. c 13. m 23. w
4. d 14. n 24. x
5. e 15. o 25. y
6. f 16. p 26. z
7. g 17. q
8. h 18. r
9. i 19. s

10. j 20. t

Figure 3.1: A prefix-free code for the alphabet

coding scheme based on fixed length codewords. For example, if we encode
the word “shorter” using our variable length scheme, the resulting coded
message “198151820518” is 12 digits long. On the other hand, encoding
“shorter” using the fixed length scheme we proposed in Section 2.1 would
require 14 digits since each letter uses two digits. The variable length coding
scheme saves two digits because “shorter” contains two letters, “e” and “h”
that have single digit codewords.

Reducing the number of symbols used to encode a message can be quite
important. If the message is going to be transmitted through a computer
network, the amount of time required for the transmission will be propor-
tional to the number of symbols required to encode it. If we can reduce
the number of symbols in the encoding by 10%, then the message can be
transmitted 10% more quickly.

To maximize the savings obtained by using a code with variable length
codewords, we should arrange to assign short codewords to the symbols that
will appear most frequently in the messages we encode and longer codewords
to the symbols that appear less frequently. To do this, we need information
about how frequently various symbols appear in the text we want to encode.

It is difficult to give accurate letter occurrence values for the English
language. The frequencies with which letters occur vary slightly depending
on what samples of English text you examine. Fortunately, all we need is
a set of representative frequency estimates that we can use to motivate our
consideration of various coding schemes. With this in mind, we will use the
frequencies with which various letters appear in the text of one book, Alice
in Wonderland.

In Figure 3.2 we show the fractions of the text of Alice in Wonderland



3.2. EXPLOITING SYMBOL FREQUENCIES 29

e 0.126 d 0.046 p 0.014
t 0.099 l 0.043 b 0.014
a 0.082 u 0.032 k 0.011
o 0.076 w 0.025 v 0.008
i 0.070 g 0.024 q 0.002
h 0.069 c 0.022 x 0.001
n 0.064 y 0.021 j 0.001
s 0.060 m 0.020 z 0.001
r 0.051 f 0.018

Figure 3.2: Fractional distribution of letters in text of Alice in Wonderland

accounted for by each of the 26 letters of the alphabet. That is, assuming
that there are a total of N letters in the book, there must be 0.126N e’s,
0.046N d’s, and 0.001N z’s. (In fact, the fractions given in the table have
clearly been rounded to the nearest thousandth, so 0.126N and 0.046N
do not describe the exact numbers of e’s and d’s. For the purpose of our
discussion, however, we ask you to assume that the numbers in the table are
exact.)

The code presented in Figure 3.1 uses single digit codes for the seven
letters c, d, e, f, g, h, and i. Examining the table in Figure 3.2, we can see
that this list only includes three of the most frequently occurring letters.
Accordingly, if we construct a new prefix-free coding scheme in which more
of the commonly occuring letters are assigned one digit codewords then we
would expect this code to require fewer digits to encode text. The code in
Figure 3.1 also wastes one short codeword. The single digit “0” could be
used as a codeword while perserving the prefix-free property. Figure 3.3
shows an example of a coding scheme designed to address both of these
issues.

The new coding scheme uses different prefix values to indicate code
lengths. In the original code, the two digit codewords began with “1” and
“2”. In our new scheme, we have used the prefixes “8” and “9” to identify
two digit codewords. The digits “0” through “7” are used as single digit
codewords. The letters associated with these codewords are those associ-
ated with the largest frequency values in Figure 3.2: e, t, a, o, i, h, n, and
s.

Exercise: Show how to encode the words in the sentence:

“Curiouser and curiouser” cried Alice



30 CHAPTER 3. VARIABLE LENGTH CODES

0. e 80. b 90. q
1. t 81. c 91. r
2. a 82. d 92. u
3. o 83. f 93. v
4. i 84. g 94. w
5. h 85. j 95. x
6. n 86. k 96. y
7. s 87. l 97. z

88. m
89. p

Figure 3.3: A more efficient prefix-free code

using the coding schemes shown in Figures 3.1 and 3.3 (while
ignoring punctuation, spaces, and capitalization). How many
digits are required by each scheme?

Solution:

321189152119518 27144 321189152119518 318954 2712935

vs.

81929143927091 2682 81929143927091 81914082 2874810

The original scheme requires 48 digits, the “improved” scheme
takes 47.

The coding scheme shown in Figure 3.3 is as efficient a code as possible
given the letter frequencies shown in Figure 3.2 and the assumption that
we should only use codewords of length one and two. We could, however,
possibly obtain a more efficient code by using longer codewords. This may
seem like a ridiculous suggestion. How could using longer codewords produce
a more efficient code? It is worth trying, however, because using longer
codewords makes it possible to use more short codewords.

In the scheme shown in Figure 3.3, we used 8 single digit codewords. It
is obvious that we can’t use all 10 digits as single digit codewords. If we did
this, the resulting code could not be prefix-free. We might, however, hope
to use 9 single digit codewords rather than just 8. For example, we might
make 8 the codeword for “r”, the ninth most common letter. If we do this,
all longer codes will have to start with 9. There are only 10 two digit codes



3.2. EXPLOITING SYMBOL FREQUENCIES 31

0. e 90. d 990. p
1. t 91. l 991. b
2. a 92. u 992. k
3. o 93. w 993. v
4. i 94. g 994. q
5. h 95. c 995. x
6. n 96. y 996. j
7. s 97. m 997. z
8. r 98. f

Figure 3.4: A prefix-free code using three codeword lengths

that begin with 9. Therefore, if we limit ourselves to using at most 2 digits,
we will only have 19 codewords. We need 26.

The alternative is to use only 9 of the two digit codewords and then to
use the remaining two digit pair as a prefix for three digit codewords. For
example, we could use the codewords 90, 91, ... 98 and then reserve 99 as
a prefix indicating the use of a three digit codeword. If we want to make
this code as efficient as possible, we will want to associate the letters that
occur least frequently with the three digit codewords, the letters that occur
most frequently with one digit codewords, and the remaining letters with
two digit codewords. These three groups of letters correspond to the three
columns shown in the table of letter frequencies in Figure 3.2. Therefore,
the coding scheme shown in Figure 3.4 would be a reasonable way to use
three digit codewords. As an example, using this coding scheme, the word
“reject” would be encoded using the digits “809960951”.

Exercise: Show how to encode the words in the sentence:

“Curiouser and curiouser” cried Alice

using the coding schemes shown in Figures 3.4 (while ignoring
punctuation, spaces, and capitalization). How many digits are
required?

Solution:

959284392708 2690 959284392708 9584090 2914950

The new scheme requires 42 digits, a savings of 5 digits (one for
each r).



32 CHAPTER 3. VARIABLE LENGTH CODES

3.3 Evaluating a Variable Length Code

We have now considered three different variable length coding schemes for
encoding text. In the first, we simply assigned short codes to the first
few letters of the alphabet and long codes to the remaining letters. In the
other two schemes, we attempted to reduce the number of digits required
by associating short codes with the letters that are used most often and
longer codes with the remaining letters. How can we accurately compare
the performance of these codes?

If we know exactly what message will be encoded, we can compare var-
ious schemes by simply encoding the message to be encoded with each
scheme. For example, given that our last two codes were based on the
frequency with which letters appear in Alice in Wonderland, we might eval-
uate them by encoding the entire text of Alice in Wonderland with each of
the schemes.

Fortunately, we can use the table in Figure 3.2 to compute the number
of digits required to encode Alice in Wonderland without having to actually
encode the text. Suppose that the total number of letters that appear in
the text of Alice in Wonderland is N. If we take the fraction of the text that
a given letter accounts for and multiply by N, we get the number of times
that letter appears in the text. In the case of Alice in Wonderland, we can
therefore conclude that there must be .082N a’s and .014N b’s in the book.
Continuing in this way we can describe exactly how many letters in the book
would be represented using single digit codewords in any of our schemes. For
example, the coding table in Figure 3.1 uses single digit codewords for the
letters c, d, e, f, g, h, and i. Looking at Figure 3.2, we can conclude that
taken together, these letters account for

.022N + .046N + .126N + .018N + .024N + .069N + .070N

or
.375N

of the letters in Alice in Wonderland. All the other letters in the book will
be encoded using 2 digit codewords. There must be a total of N − .375N or
.625N such words if there are a total of N words in the book. Therefore, we
can conclude that the total number of digits that would be used to encode
the text would be

1(.375N) + 2(.625N)

which can be simplified to

(1× .375 + 2× .625)N



3.3. EVALUATING A VARIABLE LENGTH CODE 33

or
1.625N

Using a similar process, we can derive formulas for the numbers of digits
required to encode the text using the schemes described by Figures 3.3 and
3.4. The code in Figure 3.3 encodes the letters e, t, a, o, i, h, n, and s using
single digit codewords. These letters account for

(.126 + .099 + .082 + .076 + .070 + .069 + .064 + .060)N

or
.646N

of the letters in the text. The remaining letters are encoded using 2 digit
codes. Therefore, the number of digits required to encode the text will be

1(.646N) + 2(1− .646)N

which simplifies to
(1× .646 + 2× .354)N

or
1.354N

This second scheme is clearly better than the first scheme. It requires 1.354N
digits to encode the book which is less than the 1.624N digits used by the
other scheme.

Finally, if you compare the encoding table shown in Figure 3.4 with the
table of letter frequencies in Figure 3.2, you will notice that we arranged
these two tables so that the letters in both tables are arranged in the same
order. As a result, all the letters represented using single digit codewords
fall in the first column of both tables, all the letters represented by two
digit codewords fall in the second column, and all the letters represented by
three digit codewords fall in the third column. By summing the percentages
in each column, we can see that when the third scheme is used, 69.7% of
the text will be encoded using single digits, 25.1% with double digits and
only 5.2% with three digit codewords. This implies that the total number
of digits used will be

(1× .697 + 2× .251 + 3× .052)N

or
1.355N



34 CHAPTER 3. VARIABLE LENGTH CODES

The value of this formula will be just a little bit bigger than the formula we
obtained for the second scheme, 1.354N .

We can see why the second scheme performs just a tiny bit better than
the third scheme by carefully considering the differences between the two
schemes. The third scheme encode the letter r with one digit instead of 2.
Since 5.1% of the letters are r’s, this will reduce the number of digits required
by 0.051N . Unfortunately, the third scheme uses one extra digit for all the
letters that appear in the last column. Since these letters account for a total
of 5.2% of the total, this causes an increase of 0.052. The difference between
this increase and the decrease resulting from using only one digit for r’s is
0.001N .

Our analysis of the third coding scheme, however, makes it clear that
there are cases where a variable length code can be made more efficient by
using longer codes for some letters. If r’s accounted for 5.5% of the letters in
the text and p’s only accounted for 1.0%, then we would save 0.055N digits
by using a one digit codeword for r while switching the eight least common
letters to three digit codewords would only require an additional 0.048N
digits. In this case, the code with three digit codewords would save 0.007N
digits. Clearly, finding the best coding scheme for a particular document
requires careful attention to the frequency with which various letters occur
in the document.

3.4 Probabilities and Expected Values

In many practical applications, a single coding scheme may be used to encode
many different messages over time. In such situations, it is more useful to
measure or predict the average performance of the scheme on a variety of
typical messages than to determine the number of digits required to encode
a particular message. The trick is to define “typical.” Is it reasonable to
assume that the text of Alice in Wonderland is typical of all English writing
(including email and IM messages)? If not, is there some collection of books,
or network messages that we can identify as “typical”?

The good news is that once a collection of typical text is identified, we can
predict the behavior of encoding scheme using a table of letter frequencies for
the selected text much like that shown in Figure 3.2. In fact, the calculations
performed to predict the behavior of a scheme on typical message will be very
similar to those used to calculate the number of digits required to encode
Alice in Wonderland in the last section. The interpretations associated with
the values used in the computation, however, will be different in subtle but



3.4. PROBABILITIES AND EXPECTED VALUES 35

important ways.
To appreciate these differences, suppose that instead of trying to encode

all of Alice in Wonderland, we just encoded Chapter 4 using the scheme
described in Figure 3.3. Just as we used N to represent the number of
letters in the complete book, we will let M represent the number of letters
in Chapter 4. Obviously, M < N .

It is unlikely, that the numbers in Figure 3.2 will exactly describe the
distribution of letters in Chapter 4. Chances are that Chapter 4 may con-
tain proportionally more a’s or less b’s or less c’s, etc. than the entire book.
Therefore, while we concluded that encoding the entire book would require
exactly 1.354N digits, the formula 1.354M will not tell us the exact number
of digits required to encode Chapter 4. We would, however, expect the per-
centages that describe the distribution of letters in Chapter 4 to be similar
to those for the entire book. Therefore, we would expect 1.354M to be a
good estimate of the number of digits required to encode the chapter.

The same logic applies if we encode even smaller sections of the book.
Instead of encoding an entire Chapter, we might encode just a page or
even a single paragraph. If M denotes the number of letters in whatever
subsection of the text we choose, then we would still expect 1.354M to
provide a reasonable estimate of the number of digits that will be required
to encode the subsection.

Taking this line of thought to the limit, suppose that we encode just
a single, randomly chosen letter from the book. That is, let M = 1. We
would then conclude that we expect that our encoding scheme will use 1.354
digits to encode the randomly chosen letter. Clearly, our scheme will never
use 1.354 digits to encode any letter. Any individual letter is encoded using
either exactly 1 or 2 digits. So we should think a little about how we should
interpret the value 1.354.

The number 1.354 in our example is an example of what is called an
expected value. This is a term that comes from the mathematical field of
probability theory. In the terminology of probability theory, picking a ran-
dom letter to encode from Alice in Wonderland is an experiment with 26
possible outcomes. The likelihood of each outcome is represented by a num-
ber between 0 and 1 which is called the probability of the outcome. The
larger the probability associated with an outcome, the more likely it is that
the outcome will actually occur. The sum of the probabilities of all possible
outcomes must equal 1. Informally, the probability of a particular outcome
equals the frequency with which the outcome would occur if the experiment
were conducted many, many times. In particular, we can interpret the val-
ues in Figure 3.2 as the probabilities that a randomly selected letter from



36 CHAPTER 3. VARIABLE LENGTH CODES

Alice in Wonderland will match a particular letter of the alphabet. Using
the notation P (x) to denote the probability of outcome x, we would then
say that P (a) = 0.082, P (b) = 0.014, P (c) = 0.022, and so on.

Probability theory recognizes that sometimes, it is not the actual out-
come of an experiment that matters. Instead, some particular property of
the outcome may be all that is of interest. For example, a biologist might
plant and observe the growth of 100 plants. Each plant produced would
represent an “outcome” with many features including the number of leaves
on each plant, the color of the flowers, etc. It may be the case, however,
that all the biologist cares about is the height of the plants.

To capture this idea, probability theory uses the notion of a random
variable. Unfortunately, this is a very misleading name. A random variable
is not a variable at all. Instead, a random variable is a function from the
set of all possible outcomes of an experiment to some other set of values
that represent a feature of interest. For example, the random variable of
interest in our biology example would be the function that mapped a plant
to it height.

Applying the same terminology to our Alice in Wonderland example, the
random variable we are interested in is the function that maps a letter of
the alphabet to the length of the codeword associated with that letter in
Figure 3.3. If we name this random variable L (for length), then L(a) =
1, L(b) = 2, L(c) = 2, L(d) = 2, L(e) = 1, and so on.

Finally, given a random variable, the expected value of the variable is de-
fined as the sum over all possible outcomes of the product of the probability
of the outcome and the value of the random variable for that outcome. If X
is a random variable, we use E(X) to denote the expected value of X. Thus,
in the general case, we have

E(X) =
∑

x∈{outcomes}
P (x)X(x)

In the case of our Alice in Wonderland example, we would write

1.354 = E[L] =
∑

x∈{a, b, c, ... }

P (x)L(x)

3.5 Variable Length Binary Codes

We can construct variable-length binary codes that are uniquely decodable
in much the same way we constructed such codes using the digits 0 through



3.5. VARIABLE LENGTH BINARY CODES 37

Letter Code-
Grade word

A 110
B 01
C 10
D 00
F 111

(a)

Letter Code-
Grade word

A 1
B 000
C 001
D 010
F 011

(b)

Letter Code-
Grade word

A 1
B 01
C 001
D 0000
F 0001

(c)

Figure 3.5: Three variable-length binary codes for letter grades

9. We simply have to ensure that the set of codewords we select is prefix
free. That is, no codeword can appear as a prefix of any other codeword.

We have already seen that binary codes require longer codewords than
codes based on decimal digits. To avoid having to use very long binary
codes, we will begin by considering an alphabetic coding example that uses
considerably fewer than the 26 letters of the Roman alphabet. Suppose that
you are charged with the task of designing a binary encoding scheme for
letter grades assigned to students in courses at some university. That is, you
need a scheme for encoding the five letters A, B, C, D, and F. This scheme
will then be used to encode exciting “messages” like “ABFABCDABBC”.

There are many different prefix-free variable-length binary codes that
could be used to encode these five letters. Three such schemes are shown
in Figure 3.5. With a bit of effort we can verify that each of these codes is
prefix free. For example, code (a), shown on the left in the figure, uses three
2-digit codewords and two 3-digit codewords. Both of the 3-digit codewords
start with the prefix “11” which is not used as a 2-digit codeword. As a
result, we can conclude that this code is prefix free.

Because these three codes assign codewords of different lengths to the
various letters of the alphabet, the total number of digits required to encode
a given message will depend on the code used. For example, suppose 10
students were assigned the grades B, C, A, B, A, F, C, A, B, and C. This
sequence of grades, “BCABAFCABC”, would be encoded as:

• 011011001110111101100110 using the scheme described by table (a),

• 000001100010110011000001 by scheme (b), and

• 0100110110001001101001 by scheme (c).



38 CHAPTER 3. VARIABLE LENGTH CODES

While it is not difficult to verify that these binary coding schemes are
prefix free, larger alphabets will require much longer codewords making it
more difficult to verify that a code is prefix-free by simply examining the list
of codewords. Fortunately, there is a simple way to diagram the structure of
a set of binary codewords that both makes it easy to decode messages and
makes it clear that a given code satisfies the prefix free constraint.

The diagramming system is similar to decision trees sometimes used to
represent the process a person should follow in reaching a decision of one sort
or another. As an example of such a decision tree, in Figure 3.6 we provide a
helpful guide to selecting a meal plan found at the Housing and Food Service
website of the University of Nevada at Reno.1 As the instructions provided
with the diagram indicate, a student using it to select a food plan proceeds
by answering a series of yes/no questions. Each answer determines the next
step along a path that ultimately leads to a box that contains the food
plan the student should select. These diagrams are called trees because they
“branch” at the places that correspond to questions. Based on this analogy,
the starting point is called the root (even though it is usually drawn at the
top of the diagram rather than the bottom), and the endpoints of the paths
where the final answers are placed are called leaves.

We can easily build decision trees that can be used to decode messages
encoded with schemes like those shown in Figure 3.5. All of the questions in
such decision trees will be the same: “Is the next digit in the encoded mes-
sage a 0 or a 1?” As a result, we can draw these trees more compactly than
the tree shown in Figure 3.6 by omitting the questions and simply labeling
the paths between nodes with “0”s and “1”s. For example, trees describing
how to decode the codes shown in Figure 3.5 are shown in Figure 3.7.

The diagram in Figure 3.8 illustrates how the tree from Figure 3.7(a)
would be used to decode the message “0110”. We begin at the root of the
tree and with the first digit of the message, “0”. Because the first digit is
“0”, we follow the path from the root that is labeled with “0”. We show this
in Figure 3.8(I) by darkening this path. The next digit, “1”, would then be
used to determine the path to take from the end of the edge highlighted in
Figure 3.8(I). This tells us to take the path leading to the right as shown
in Figure 3.8(II). This two-step path leads to a leaf labeled with the letter
“B”. Therefore, we conclude that the first letter encoded by the message is
“B”.

After reaching a leaf, we return to the root of the tree to continue decod-
ing any binary digits remaining in the message. In this example, the first

1Really. We didn’t make this up. Visit http://www.reslife.unr.edu/decisionchart.html.



3.5. VARIABLE LENGTH BINARY CODES 39

Figure 3.6: A decision chart for indecisive students



40 CHAPTER 3. VARIABLE LENGTH CODES

Figure 3.7: Decision trees for the coding schemes shown in Figure 3.5

Figure 3.8: Using the decision tree from Figure 3.7(a) to decode 0110



3.6. HUFFMAN CODES 41

Grade Percent
A 20%
B 29%
C 25%
D 19%
F 7%

Figure 3.9: Distribution of letter grades

digit after the code for “B” is “1”, so we follow the edge leading right from
the root as shown in Figure 3.8(III). The last digit of the message, “0” tells
us to go to the left leading to a leaf labeled “C” as shown in Figure 3.8(IV).
The complete message is therefore decoded as “BC”.

3.6 Huffman Codes

Because the coding schemes shown in Figure 3.5 use different length code-
words for different letters, the number of digits required to encode a given
message may vary from one code to another. We can see this by looking
at the encodings of the string of letter grades “BCABAFCABC” used as
an example above. Schemes (a) and (b) use 24 binary digits to encode this
sequence, but scheme (c) uses 22. Given such differences, we should try to
use information about the messages that will be encoded to select the coding
scheme that is likely to require the smallest number of binary digits.

As an example, suppose that at some college the registrar’s office tallied
all the grades assigned during the academic year and concluded that the
percentages of As, Bs, Cs, Ds, and Fs assigned were those shown in Fig-
ure 3.9.2 Given this data, if we are interested in encoding the grades for
a typical course at this institution, it is be reasonable to assume that the
probability that a randomly selected student received an A is 0.2, that the
probability the student received a B is 0.29 and so on. We can then use
these probabilities to compute the expected number of binary digits that
will be used to encode letter grades using each of our three coding schemes.

Figure 3.10 shows tables that summarize the process of computing ex-
pected values for these coding schemes.

The figure contains one table for each of our three encoding schemes.
2This data is clearly from an institution that has resisted grade inflation much more

effectively than most schools!



42 CHAPTER 3. VARIABLE LENGTH CODES

Letter Code Code- Grade Length
Grade Word word Proba- x

Length bility Prob
A 110 3 0.20 0.60
B 01 2 0.29 0.58
C 10 2 0.25 0.50
D 00 2 0.19 0.38
F 111 3 0.07 0.21

Expected digits/letter = 2.27

(a)

Letter Code Code- Grade Length
Grade Word word Proba- x

Length bility Prob
A 1 1 0.20 0.20
B 000 3 0.29 0.87
C 001 3 0.25 0.75
D 010 3 0.19 0.57
F 011 3 0.07 0.21

Expected digits/letter = 2.60

(b)

Letter Code Code- Grade Length
Grade Word word Proba- x

Length bility Prob
A 1 1 0.20 0.20
B 01 2 0.29 0.58
C 001 3 0.25 0.75
D 0000 4 0.19 0.76
F 0001 4 0.07 0.28

Expected digits/letter = 2.57

(c)

Figure 3.10: Expected digits per grade for coding schemes from Figure 3.5



3.6. HUFFMAN CODES 43

Each row of a given table summarize all the information about the encoding
of one letter grade within a given coding scheme. The first entry in each row
is one of the five letter grades. This is followed by the codeword for the letter
grade and the number of binary digits in the codeword. Next, we list the
probability that a particular letter grade will be used. Finally, we show the
product of the probability that a letter grade will be used and the length
of its codeword. The sum of these products is the expected value of the
length of the codeword for a randomly selected letter grade. These expected
values are shown under the last column of each of the three tables. That
is, we would predict that encoding grades with scheme (a) would require an
average of 2.27 binary digits per letter grade, scheme (b) would require 2.6
digits per letter grade, and scheme (c) would require 2.57 digits per grade.

Clearly, of the three codes we have been considering, it would be best
to use scheme (a). It should also be obvious, however, that scheme (a) is
not THE best encoding scheme to use given the frequencies in Figure 3.9.
According to the frequency figures, a grade of A occurs slightly more often
than a D. In scheme (a), however, the codeword for A is longer than the
codeword for D. Interchanging these codeword would therefore produce a
more efficient code for this data. This reveals the fact that our three codes
are just a sample of all the possible codes that could be used to encode letter
grades. How can we be sure that we really have the best scheme without
considering every possible coding system?

Fortunately, there is an algorithm that can be used to construct a vari-
able length binary coding scheme that is guaranteed to be “best” in the
sense that the expected number of digits it uses per symbol is less than
or equal to that used by any other scheme. The algorithm was devised by
David Huffman in 1951 while he was a graduate student at MIT. The codes
produced are known as Huffman codes.

Huffman’s algorithm exhibits a technique that often provides the key to
solving a difficult problem: Find a way to solve a slightly simpler problem
such that you can use the solution to the simpler problem as the basis for
solving the original. We can illustrate this idea in the context of our letter
grade example.

Given that we don’t know how to find a code for the standard set of
five letter grades, suppose that we instead tackle the problem of encoding
grades from a system that only uses four letters. Looking at the statistics
in Figure 3.9, it is clear that the grades D and F are the two grades that are
the least frequently used. One can imagine that a school with such a grade
distribution might decide that is was not worth keeping two grades that
were used so rarely. They might decide to replace all Ds and Fs with some



44 CHAPTER 3. VARIABLE LENGTH CODES

Grade Probability
A 0.20
B 0.29
C 0.25
E 0.26

Figure 3.11: Distribution of letter grades

Grade Codeword
A 00
B 01
C 10
E 11

Figure 3.12: Huffman Code for four letter grades

new grade, possibly an E. Assuming that the the new grade of E is used
whenever a D or F would have been assigned, the new grading distribution
would be described by the table in Figure 3.11. That is, the fraction of
Es assigned would be the sum of the factions of Ds and Fs that had been
assigned, 0.19 + 0.07.

We still don’t know how to find the best coding scheme for the four letter
grades, A, B, C, and E. We do know, however, that it will be slightly easier
to do this than to find the best scheme for a five letter grading scheme,
because there are simply fewer possible codes to consider. Best of all, once
we choose a scheme to use for the four letter grades, there is a simple way
to extend it for the original five letter system.

Suppose, for example, that we somehow determine that the best coding
scheme to use for the grade distribution shown in Figure 3.11 is the one
shown in Figure 3.13. In this scheme, the codeword for E is 11. We know that
E is being used for all grades that would have been Ds and Fs. Therefore, a
natural way to extend the four letter code to support the original five letter
grades is to derive the codewords for D and F from the codeword for E.
We do this by adding one extra digit to the codeword for E. For example,
we might add a 0 to E’s codeword, 11, to obtain the codeword for D, 110.
Then, we would add a 1 to E’s codeword to obtain the codeword for F, 111.
The scheme for the five letter grades would then use the codewords listed in
Figure 3.13.



3.6. HUFFMAN CODES 45

Grade Codeword
A 00
B 01
C 10
D 110
F 111

Figure 3.13: Huffman Code for five letter grades

The key to understanding Huffman’s algorithm is to realize that we can
apply the process of “simplifying” the problem by combining two letters over
and over again. That is, in order to find the coding scheme for the four letter
grades shown in Figure 3.13, we will combine two of these grades to form a
three letter grading system. To find a coding scheme for these three letters,
we will again combine two of them to form a two letter grading system.
Luckily, at this point we can stop because there is only one reasonable way
to encode a pair of letter. We use a single 0 as the codeword for one letter
and a single 1 for the other.

The standard scheme for applying Huffman’s algorithm takes advantage
of the fact that decision trees provide an alternative to tables like those in
Figure 3.5 for describing coding schemes. That is, while we first showed
a table of codewords and then later drew the corresponding decision tree,
we can also work in the opposite direction. Given a decision tree, we can
easily build a table of the codewords for all symbols. This is how Huffman’s
algorithm works. It tells us how to build a decision tree from which we can
derive an optimal coding scheme.

When we apply Huffman’s algorithm, we will keep track of fragments of
what will eventually be the complete decision tree as we repeatedly reduce
the number of symbols we are trying to encode. In particular, when we make
a reduction like combining D and F into a single symbol, we will represent
this single symbol as a small decision tree rather than using a letter like E.
For example, after combining D and F as described above, we would use
the table shown in Figure 3.14 to describe the four letter code rather than
a table like the one we showed earlier in Figure 3.11.

At each step in the algorithm, we will simplify the problem by replacing
the two symbols that are least likely to be used in a message with a single
symbol. Given this rule and the percentages shown in Figure 3.14, we can
see that the two symbols that needed to be combined next are A and C.
A table showing the three-symbol coding problem that results is shown in



46 CHAPTER 3. VARIABLE LENGTH CODES

Grade Probability
A 0.20
B 0.29
C 0.25

0.26

Figure 3.14: First step in application of Huffman algorithm to letter grades

Grade Probability

0.45

B 0.29

0.26

Figure 3.15: Second step in application of Huffman algorithm to letter grades

Figure 3.15. Note that the probability associated with the symbol that
replaces A and C is the sum of the probabilities that had been associated
with A and C, 0.20 and 0.25.

For the next step, we combine B and the tree fragment that represents
D and F, because the probabilities associated with these two symbols are
the two smallest remaining probabilities. When we combine a symbol that
is already represented by a fragment of a decision tree with another symbol,
we simply make the existing tree fragment a leaf in the tree that represent
the new reduced symbol. As a result, the table shown in Figure 3.16. is
used to represent the result of this step in the algorithm.

We can conclude the process by constructing the tree that would describe
the single symbol that would represent all five of the original letter grades.
This tree is shown in Figure 3.16. The code described by this tree can then
be used to encode message composed of the original five letter grades. This
code is optimal in the sense that the average number of binary digits that
will be required to encode messages with the given probability distribution
will be less than or equal to that required for any other code.

We will not attempt to provide a complete justification for the claim that
Huffman codes are optimal. We will, however, mention one fact that helps



3.6. HUFFMAN CODES 47

Grade Probability

0.45

0.55

Figure 3.16: Third step in application of Huffman algorithm to letter grades

Figure 3.17: Huffman code decision tree for letter grades

explain why this is true. Consider the longest codewords used in the three
coding schemes we presented in Figure 3.5. You will notice that they come
in pairs. In scheme (a), the longest codewords are those used for D and F,
110 and 110. These form a pair in the sense that they share the prefix 11.
The only difference between the two members of this pair is that one ends
with 0 and the other ends with 1. In scheme (c), the codes for D and F
behave in the same way, but they are both four digits long. In scheme (b),
there are two pairs instead of just one. The codes for B and C both start
with 00, and the codes for D and F both start with 01.

It turns out that in any variable-length binary coding scheme that is
optimal, the longest codewords used will come in such pairs. That is, for each
codeword that is of maximal length there will be another codeword of the
same length that is identical except for its last digit. Suppose for example,
that in some coding scheme, 0110010 is a maximal length codeword. Then
there must be another symbol that is assigned the codeword 0110011 within
the scheme. Huffman’s algorithm exploits this fact. This is why at each step
we combine the two least common symbols rather than the most common
symbols or any other pair. The fact that we know that the codes associated
with the least common symbol will be of the same length is what makes it



48 CHAPTER 3. VARIABLE LENGTH CODES

possible to derive codewords for these two symbols from the codeword used
for the combined symbol that represented them in the reduced problem.


