
Chapter 4

Digital Transmission

It should be clear by now that translating information into binary is not
always simple. The advantage of making such a translation, however, are
enormous. If we know that every form of information we care to store or
transmit can be encoded in binary, we only have to think about how to
store and transmit binary. This ensures that the networks we design will be
flexible. When the Internet was first conceived and constructed, there were
no MP3 files. The Internet was initially used to transmit text and programs
but not sound. No redesign or reimplementation was required, however, to
accommodate MP3 or any of the other media that are currently transmitted
through the Internet. Once someone concocts a way to translate information
in some medium into binary and back again to its original form, the Internet
is capable of transporting this new form of information.

The uniformity provided by ensuring that the only form of information
transmitted is binary contrasts with the variety of media in which this infor-
mation is transmitted. Information traveling through the Internet may flow
through telephone cables, cable TV lines, fiber optic transmission cables or
between microwave antennae. Our goal in this chapter is to present the
basic techniques used to transmit information in all these media.

While we will be trying to cover transmission techniques applicable to a
variety of media, we will restrict our attention to understanding how infor-
mation can be transmitted between a single pair of computers connected by
a direct link. This is not representative of most of the communications that
actually occurs in the Internet. In many cases, the pairs of machines that
communicate through the Internet are not directly connected. The hard-
ware and software that constitute the Internet must find a pathway between
such a pair of machines composed of many direct links between machines

49



50 CHAPTER 4. DIGITAL TRANSMISSION

other than the two wishing to communicate. Thus, while communications
through the Internet occurs in more complex ways than we will be discussing
in this chapter, such communications depend on the simple direct links we
will discuss.

4.1 Time and Energy

People frequently comment that someone “put a lot of time and energy”
into a job well done or complain that they can’t fulfill someone’s requests
because they ran out of “time and energy”. The cliche “time and energy”
also describes the factors most critical to information transmission through
computer networks. All it takes to send a information from one computer
to another is a bit of energy and a good sense of timing.

We have had communication networks far longer than we have had com-
puter networks or computers. The most obvious example is the phone sys-
tem. Before the phone system, there was the telegraph system. While the
telegraph system was in many ways more primitive than the phone system,
communications through a telegraph surprisingly has more in common with
modern computer network communications than does the phone system.
In fact, examining the techniques used to send messages through a tele-
graph can give significant insight into the means used to send binary signals
through modern computer networks.

Physically, the structure of a telegraph link is quite simple. Although
telegraph wiring typically stretches over many miles, it is no more compli-
cated that the wiring connecting your home power supply to the light and
light switch in your room. In a telegraph system, the power supply and
switch are located at one end of a long pair of wires. At the other end, a
light or a buzzer or some similar device is connected to the pair of wires.
The switch at the sending end enables the person at the sending end to con-
trol the flow of electrical energy to the light bulb or buzzer. Depressing the
button is the same as turning on a light switch. Doing so allows electrical
current to flow from the power source to the bulb or buzzer. Releasing the
button cuts off the flow of energy.

This is enough to grasp the role of the “energy” in our “time and energy”
description of network communications. The switch at the sender’s end of a
telegraph allows the sender to determine when energy flows from the sender’s
switch through the telegraph wire to the receiver. The light or buzzer at
the receiving end enables the receiver to determine when energy is flowing.
In this way, information about the sender’s actions are transmitted over a



4.1. TIME AND ENERGY 51

distance to the receiver. All the receiver needs to know is how to interpret
these actions.

The key that en-
abled the receiver to in-
terpret the sender’s ac-
tion in most telegraph
systems was the Morse
code. Morse code,
as you probably already
know, is based on us-
ing the sender’s switch to
transmit long and short
pulses of electric cur-
rent called “dashes” and
“dots”. The receiver
distinguishes dots from
dashes by observing the relative duration for which the buzzer buzzes or
the light shines. The Morse code associates a particular sequence of dots
and dashes with each letter of the alphabet. For example, the letter “A” is
sent by transmitting a dot followed by a dash. A dash followed by a dot, on
the other hand, represents the letter “N”. The chart on the right shows the
combinations of dots and dashes used to transmit each of the letter of the
alphabet, the ten digits and the most common punctuation symbols.

The dots and dashes are where “time” comes into the picture. While it
is the transmission of energy that enables the receiver to tell that the sender
has turned on the power, it is by observing the time that elapses while the
power is on that the receiver can distinguish dots from dashes.

When we think of alphabets, we think of written symbols. The symbols
of an alphabet, however, don’t need to be written. In this sense, the dot and
dash are two symbols in the alphabet of Morse code. At first, dot and dash
seem to be the only symbols in the Morse alphabet. If this were the case,
then Morse code would be based on a binary alphabet. We could choose dot
to represent zero and dash to represent one and immediately use these two
symbols to efficiently transmit any digital data in binary form.

If we look at the use of Morse code more closely, however, we realize that
its alphabet contains more than two symbols. Suppose you are the receiver
of a Morse code message composed of the sequence:

dash dot dash dot dot dash dash or . . .

Looking in the Morse code table you might notice that the sequence .



52 CHAPTER 4. DIGITAL TRANSMISSION

. represents “C”, that “. ” represents “A” and that “ ” represents “T”.
From this you might conclude that I had so little imagination that I could
not think of anything better than “CAT” to spell in Morse code. On the
other hand, if you also notice that “. . ” represented the letter “U” you
might conclude that I actually had enough imagination to decide to spell
“TAUT” in Morse code. The problem is that if you received the sequence
. . . you would have no reasonable way to decide (without additional
context) whether I was trying to send you the word “CAT” or “TAUT”.

In actual Morse code, this problem is solved by leaving a little extra
space between the end of a sequence of dots and dashes that encodes one
letter and the beginning of the next letter’s sequence. So, if I wanted to
spell “CAT” I would send the pattern:

. . .

and if I wanted to send “TAUT” I would actually send the pattern:

. . .

by first pressing the telegraph switch long enough to send a dash and then
pausing long enough to let you know that I was finished with one letter, T,
and about to start another letter before sending the dot and dash for “A”.
Of course, I would have to release the switch for a moment between the dot
and dash for “A”. When doing so, I would have to be careful not to pause
too long. If that pause became too long the receiver would interpret the dot
as and E and the dash as another T.

What this example shows is that the periods of time when the sender’s
switch is released in Morse code are just as important as the times when
the switch is depressed. A short pause encodes different information than a
long pause just as a dot encodes different information than a dash. Again,
this illustrates the importance of time as a vehicle for encoding information
in this system. It also shows that Morse code depends on an alphabet of at
least four symbols: dot, dash, short pause and long pause. Actually, there
is a fifth symbol in the Morse code alphabet. To separate words, the sender
inserts and even longer pause.

4.2 Baseband Binary Encoding

Many modern computer networks transmit information using the same basic
capabilities required by Morse code: the ability to control and detect the
flow of energy between the sender and receiver and the ability to measure



4.2. BASEBAND BINARY ENCODING 53

time. That is, the symbols in the alphabets used by these systems are
distinguished from one another by detecting whether or not energy is flowing
and measuring the time that elapses between changes in the state of the
energy flow. Unlike Morse code, these systems are designed to use a true
binary alphabet, distinguishing only two basic symbols.

4.2.1 On-off Keying

Since a binary alphabet needs two symbols and the switch in a telegraph-
like communications system has two states — on and off, there is an obvious
way to encode the 0’s and 1’s of binary in such a system. A natural scheme
is to turn the sender’s switch on to send a 1 and off to send a 0. At first this
may make it seem as if the presence or absence of energy flow can carry all
the information and that time is irrelevant. This is not the case.

Consider the difference between sending the messages 10 and 110 using
the system just suggested. To send the first message one would simply turn
the switch on to send the 1 and then turn it off to send the 0. Now, to
send the second message, one would again turn the switch on to send the
first one. The switch is also supposed to be on to send the second 1. If
we turn the switch off between the first 1 and the second 1, this would be
interpreted as a 0. So, the switch must be left on for the second 1 and then
finally turned off for the final 0. In both cases, the actions performed for
the two messages are the same. The switch is turned on and then turned
off. The only difference between the two is that the switch might be left on
longer to send two 1’s than to send a single 1. So, in order to successfully
interpret signals in this system, the receiver would have to measure the time
the switch was left on to determine whether this act represented a single 1
or two 1’s.

In order for the receiver to distinguish a single 1 from a pair of 1’s, the
sender and receiver must agree on a precise amount of time that will be
used to send all single symbols. Turning the switch on for that long will
be interpreted as a single 1. Leaving the switch on for twice the agreed
upon time will signal a pair of 1’s. Similarly, if the switch is left off for
some period the receiver will determine whether to interpret that action as
a single 0 or multiple 0’s by dividing the length of the period by the agreed
upon duration of a single symbol. Such a system of transmitting binary
information is called On-off keying.



54 CHAPTER 4. DIGITAL TRANSMISSION

4.2.2 Visualizing Binary Communications

To understand on-off keying it may be helpful to consider a visual repre-
sentation of the behavior of such a system. Even if the behavior of on-off
keying is quite clear already, becoming familiar with this visual represen-
tation will simplify the explanation of some other transmission techniques.
As we have emphasized in this discussion, the two properties that matter
in such a transmission system are time and energy. So, to envision its be-
havior, we can measure the energy passing some point in the system (the
receiver’s end, for example) and plot the measurements as a function of time.
For example, the transmission of the binary sequence “10100110” would be
represented by a graph like:

The solid lines are the axes of the graph. Time varies along the horizontal
axis, energy flow along the vertical axis. So the areas where the dotted line is
traced right next to the black line represent times when the sender’s switch
was off. Places where the dotted line is distinctly above the horizontal axis
represent times when the sender’s switch was on, presumably to transmit a
1.

Note that this graph is general enough to describe many transmission
systems other than the telegraph system we have used to make our discus-
sion concrete. In real computer communication systems based on sending
electrical signals through wires, there are no human operated switches or
buzzers or light bulbs. The flow of electricity through the wires connecting
the computers is controlled by electronically activated switches controlled
by the computer itself and the receiver detects the incoming signal with a
sensitive electronic device rather than a light bulb. The flow of electricity
between such computers can still be accurately described by a graph like
that shown above. In many modern computer communications systems,
wires and electrical signals are replaced by fiber optic cable and pulses of
light generated by computer controlled lasers or light emitting diodes. This
time, the graph above has to be adapted a bit. Plotting electrical voltage
on the verticl axis will no longer make sense. However, if the vertical axis
is simply used to plot a measure of the arrival of energy in the form of



4.2. BASEBAND BINARY ENCODING 55

light rather than electricity, the behavior of the signaling system can still be
understood using such a graph.

4.2.3 Protocols

A key term in our explanation of on-off keying is “agree”. The parties at
either end of the communication line can only successfully exchange infor-
mation if they have previously agreed upon the duration of a single symbol
in time. The duration of signals is not the only thing they need to agree
on. Although it may seem natural to turn the switch on for 1 and off to
represent 0, one could do the unnatural thing and use turning the switch
on to represent 0 and turning it off for 1. In fact, there are many computer
systems that use this convention. The only way two parties can effectively
communicate using either scheme is if they have agreed which scheme will
be used ahead of time. This isn’t a fact that is peculiar to electronic com-
munications. All human communications depends on the assumption that
we at least more or less agree on many things like what the words we use
mean. The alternative, which often does result from lack of agreement in
human communications, is confusion.

Speaking of confusion, one major source of confusion in human communi-
cation is jargon, “the specialized or technical language of a trade, profession,
or similar group”. Computer networking experts as a group are particularly
fond of jargon. In fact, one of the things that they have made up their
own terminology for is this very notion that successful communications de-
pends on previous agreement to follow certain conventions. They refer to the
conventions or standards followed in a particular computer communications
system as a protocol. When most of us use the term protocol we are think-
ing about diplomats. So, the computer network use of the term may cause
some confusion. Just remember that when used in the context of computer
communications a protocol is simply the set of rules two or more computers
must abide by in order to successfully exchange information. That is, a
protocol is just a communications standard.

4.2.4 Message Framing

We have seen a simple scheme for sending 1’s and 0’s through a communi-
cations link. To make the system complete, however, we need to decide how
to send one more thing — nothing. That is, we have to decide what should
be happening on the link between two computers when neither machine is
sending anything to the other. This is necessary because in most situations



56 CHAPTER 4. DIGITAL TRANSMISSION

information does not flow continuously between two computers. Instead,
one computer sends a discrete chunk of information (an email message, a
request for a web page, a login password, etc.) and then pauses waiting for
a reply. The receiving computer has to be able to recognize the beginning
and end of each such message.

To appreciate that this question isn’t trivial, imagine that two comput-
ers are connected by a link on which on-off keying is used to encode binary
information. Consider what the receiver should expect to see on the com-
munications line when no data is being sent. The most obvious answer is
“no incoming energy”. If the computer on the other end is not sending any
information, we would expect it do do so by not sending anything at all. It
would effectively disconnect itself from the line. In this case, the signal seen
by the receiver when no data is arriving would look like:

Recall that (reading from left to right) the signal pattern:

would represent the sequence 1010011. So, the signal seen by the receiver
when the sequence 1010011 is sent preceded and followed by an idle link
would look like:

Unfortunately, this is also the signal the receiver would see if the se-
quence 01010011 were sent preceded and followed by an idle link. The only
differences between the two sequences “1010011” and “01010011” is a lead-
ing 0. Without additional information, the receiver would have no way to
determine which of these two sequences was the intended message.

Similar problems would arise if we had instead decided to have the sender
transmit energy during idle periods instead of disconnecting. The problem
is that if we limit ourselves to using only the two symbols of the binary
alphabet as encoded by the presense or absence of energy flow, there is no
way to distinguish a third possibility: “no message being sent”.

The solution to this problem is to add a convention to the protocols
governing communications on the link dictating how the sender can notify
the receiver that an idle period has ended and the transmission of a message



4.2. BASEBAND BINARY ENCODING 57

is beginning. One such convention is to have the sender precede each message
with an extra 1 bit. Such an extra bit is used in the protocol called RS-
232 which is widely used on communication lines connecting computers to
printers, modems, and other devices connected to “serial ports.” In this
protocol, the extra bit is called a “start bit.”

For example, if a machine wanted to send our favorite message “1010011”
using this convention, it would actually send a series of signals corresponding
to the message “11010011”. The receiver would see the signal pattern:

Knowing that this convention was being used, the receiver would recog-
nize the first signal it received as a start bit rather than an actual digit of
binary data. Accordingly, when determining the actual contents of the mes-
sage received it would ignore the start bit yielding “1010011” as the message
contents. On the other hand, if the message being sent were “01010011”, the
sender, after prepending a start bit, would transmit a sequence equivalent
to the encoding of the message “101010011”. The signal received would look
like:

Again, the receiver would treat the leading 1 as an indicator of the start
of a message rather than as a data bit and correctly conclude that the data
received was “0101011”.

On real communications lines, static occurs and a bit of static on an
idle line might be confused for a start bit. To deal with such issues, the
notion of a start bit can be generalized to the notion of a start sequence
or “preamble.” That is, a communications protocol might require that the
sender of a message begin with some fixed sequence of 0’a and 1’s which the
receiver would then use to identify the beginnings of messages. The longer
the sequence used, the less likely that static might be misinterpreted as the
beginning of a message.

In case you haven’t noticed, we have a similar problem at the other end of
each message. How does the receiver know when a message has ended? We
just stated that the signal pattern above would be interpreted as “0101011”,
but it could just as easily be interpreted as “01010110” or “0101011000000”.



58 CHAPTER 4. DIGITAL TRANSMISSION

While the start bit tells the receiver when a message begins, there is no clear
way for the receiver to know when the message has ended. The long period
of no incoming energy after the last “1” could be an idle period or it could
be a long series of 0’s.

We can’t fix this problem by adding an extra ‘1’ as a stop bit. There
would be no way to distinguish the 1’s that were part of the message from
the 1 that was supposed to serve as the stop bit. There are techniques
similar to the idea of a stop bit that use a reserved bit pattern to signify the
end of a message. We, however, will instead consider two simpler schemes.

The simplest way to enable the receiver to know when a message ends is
to make all messages have the same length. We have mentioned that a unit of
8 binary digits called the byte is widely used in organizing computer memory
systems. So, it might be reasonable to simply state that all messages sent
will consist of a start bit followed by 8 binary digits. In this case, the last
signal shown above:

would indeed be interpreted as “01010011”, since this message corre-
sponds to the variations in the signal seen in the 8 time periods immediately
following the start bit. There is an implicit end of message marker after the
eighth bit.

The RS-232 protocol uses an approach similar to this. In RS-232, how-
ever, the implicit end of message is reinforced with an explicit stop bit.
Thus, the message “01010011” would be encoded as:

The stop bit in this scheme does not provide any new information. It
instead provides a form of redundancy intended for reliability. If the receiver
does not find a stop bit at the end of a message as expected it knows that
some form of communication error has occurred (perhaps a bit of static on
an idle line was misinterpreted as a start bit).

The start and stop bits used in RS-232 messages surround the actual
contents of messages just as a frame surrounds a picture. They separate
the contents of the message from the idle periods on a communications link,
just as a frame separates a painting from the blank wall that surrounds it.



4.2. BASEBAND BINARY ENCODING 59

Even if only a start bit were used in conjunction with the assumption that
all messages would be of 8 bits in length, the combination of the start bit
and the implicit end of message mark serve as a frame. Accordingly, all the
techniques discussed in this section are known as framing techniques. The
contents of a message together with whatever other signals are needed to
know where it begins and ends are called a frame.

Of course, one can send messages longer than 8 bits through a serial port
that uses RS-232. When this is done, however, the message must be broken
down into a sequence of byte long units which are then sent as separate
frames each including start and stop bits. This is awkward and inefficient.
The start and stop bits increase the total number of bit transmission times
required to send the data by 25%. Accordingly, many other protocols use
framing techniques designed to allow message frames of variable length.

A simple way to support more flexible frame lengths is to encode the
frame length as a binary number at the beginning of the message. First, of
course, the sender would have to transmit a start bit or a pattern of start
bits. Next, the sender would transmit the size of the message in binary.
The size could be measured in bits, bytes or any other units. The sender
and receiver must, of course, agree on the units used. So, the choice of
units would have to be part of the communications protocol. In addition,
the receiver would need a way to know how may bits of the incoming data
should be interpreted as the encoding of the message length. Therefore, this
would also have to be part of the protocol.

Suppose, for example, that a protocol was designed to use one start bit
followed by a 10 bit length field in which the message length, measured in
bits would be encoded. In such a scheme, our simple message “01010011”
would be encoded using the signalling pattern shown below. To make it a
bit easier to interpret, each section of the framed message is shaded with a
different background color.

First, the sender would send a pulse of energy to serve as the start bit.
Over the next 10 time units, the server would transmit the signals needed

to encode the number 8, the length of the actual contents of the message,
as a sequence of binary digits. In the binary system, the decimal number 8
is written as 1000. Since the number of digits used to encode the length is
fixed at 10 digits, the encoding of 8 must be extended by adding otherwise



60 CHAPTER 4. DIGITAL TRANSMISSION

useless leading 0’s. If this is unclear, just think about why your odometer
reads 00100 when you have only driven a car 100 miles. Written as a 10 digit
binary number, 8 becomes 0000001000. The signal with the light shading
and labeled “MESSAGE LENGTH” encodes this binary sequence.

Finally, after the message length, the encoding of the actual message,
“01010011”, which we have seen repeatedly by now, would be transmitted.

Recall that when interpreting such a message the receiver uses the value
encoded in the “message length” portion of the frame to determine how
many digits to expect in the “message contents” portion. If the signal re-
ceived were instead:

the receiver would examine the message length portion of the frame and
realize that it was the binary encoding for the number 10. Accodingly,
the receiver would interpret the signals sent in the 10 time units after the
message length as the contents of the frame. Therefore, the receiver would
extract the 10 digit sequence “0101001100” as the contents.

The designers of such a protocol must carefully consider the size and
interpretation of the message length field in such a scheme. These decisions
will limit the variations in message size that are possible. The scheme pro-
posed in our example uses only 10 digits to encode the length. The largest
value that can be encoded in 10 binary digits is 1,023. So, the longest mes-
sage that could be sent in this scheme is 1023 binary digits or 128 bytes.
This would be too small to hold most email messages!

4.2.5 Clock Synchronization

In our discussion of telegraph systems and on-off keying, we stressed the de-
pendence of communication on time for a very good reason. It is a weakness
or at least a source of limitations of the systems. In the case of a telegraph
system this is probably fairly clear. If the humans sending and receiving
Morse code are not good at “keeping the beat”, errors may occur.

In “perfect” Morse code, a dash is three times as long as a dot. Also, the
duration of the pauses between dots and dashes should be the same of the
duration of a dot while the pauses between letters should be as long as the
dashes. In reality, the actual lengths of dots, dashes and pauses will vary
somewhat, making a perfect three to one ratio a rarity. Normally, a human
receiver can handle these variations by simply interpreting signals that are



4.2. BASEBAND BINARY ENCODING 61

close to the average dash length as dashes and those close to dot length as
dots. If the sender is quite inexperienced, however, some dots may be close
to twice as long as average and some dashes may be short enough to also
be about twice as long as a dot. In such cases, the receiver may incorrectly
interpret the signal being sent.

The chance of such errors could be easily reduced. If we revised the
rules for sending Morse code to state that dashes should be four times as
long as dots instead of only three times as long, it would become less likely
that a sender would be sufficiently inaccurate to confuse the receiver. Such
a change, however, would have an adverse effect on the speed with which
messages could be transmitted. Consider the transmission of the letter “G”
which is represented by dash-dash-dot. In the system actually used, the
time take to transmit an “G” would be nine times the time used to signal a
single dot. In the revised system, transmitting a “G” would require eleven
times as long as a single dot. This is an increase of more than 20%. Any
other letter whose representation included a dash would also take longer to
send. Although the increases in transmission time would vary from letter to
letter, the net effect would be that all Morse code transmissions would take
longer.

Of course, if increasing the time to send a dash from three dot lengths
to four would slow transmissions down, decreasing the time used for a dash
to two dot lengths would speed up all transmission. Unfortunately, given
the accuracy of human operators, it was not feasible for Morse code to be
based on such short dashes. The chance of errors would simply become
too high. With electronic, computerized transmitters and receivers, one can
imagine that it would be feasible to send Morse code signals with extremely
precise timing and to measure incoming signals very precisely. With such
equipment, one might shorten dashes even beyond the length of two dots. A
dash that was equal in length to 1.001 dots might be different enough to be
distinguished reliably from a dot. Such a change would clearly increase the
speed with which transmission could occur. The accuracy of time measure-
ment, however, is limited even in sophisticated electronic devices and more
accuracy usually entails more expense. So, at some point, one would reach a
limit where one could not make the duration of a dash closer to the duration
of a dot while providing sufficient accuracy. This is an example of the ways
in which the use of time to distinguish symbols limits the capabilities of a
communications systems.

Even though all the symbols used in the on-off keying scheme are of
equal duration, its transmission rate is also limited by the accuracy with
which time can be practically measured. In this case, the problem is not



62 CHAPTER 4. DIGITAL TRANSMISSION

the accuracy with which a single signal can be measured, but the degree to
which the sender’s and receiver’s timing can remain synchronized over long
periods.

Notice that in our discussion of Morse code, we never specifically stated
how long a dot should be. In fact, it is unnecessary to do so. Within
the first few symbols of a Morse code transmission, the receiver will see a
combination of both dots and dashes. By examining these first few signals,
the receiver can determine (at least approximately) the duration the sender
is using for dots. The sender can choose any duration for dots as long as
the other symbols are given durations that are the correct multiples of the
duration chosen for dots. In fact, even if the sender gets tired (or excited) as
transmission continues and gradually changes the duration of dots as time
goes on, the receiver should be able to adjust. This is clearly true if the
receiver is a human. A human receiver would probably make the adjustment
without even noticing the change was occurring. It is also possible to build
electronic devices capable of such adjustment. In either case, we would say
that the transmission system is self-synchronizing. That is, in such a system
it is not necessary to ensure that the sender and receiver have timers that
have been carefully adjusted to run at the same rates. Instead, based on the
contents of the messages they exchange, the sender and receiver can adjust
their measurements of time appropriately.

A system based on on-off keying, on the other hand, is not always able
to self-synchronize. First, the receiver cannot in general determine the time
interval being used for each signaling period based on what arrives from the
sender. This might not at first seem obvious. If the arriving signal looks
like:

it might seem reasonable for the receiver to determine the length of time used
to transmit a single digit from the length of the shortest interval between a
transition from a state in which energy is flowing to a state in which energy
is not flowing. Doing so with the signal shown would lead the receiver to
interpret the signal as 10100110. The problem is that the sender’s might
actually have been using an interval half as long as the receiver would guess



4.2. BASEBAND BINARY ENCODING 63

using this approach. The sender might have meant to transmit the message
1100110000111100. That is, each of the units that appear to be a single
binary digit in the diagram might really be intended to represent two distinct
digits with the same value as suggested by the diagram below.

If the sender and receiver are both told or designed to know the approxi-
mate duration used to transmit a single binary digit, they can sometimes use
self-synchronization to overcome slight inaccuracies. Suppose, for example
that the receiver’s timer was running just a bit faster that the sender’s, In
this case, the receiver would notice that the times at which the incoming
signal changed occurred slightly later than expected. The receiver could
make appropriate adjustments by slowing its clock.

The real problem manifests itself when the message being sent involves
a long sequence of identical binary digits. Suppose, for example, that the
sender’s clock is running a bit faster than the receiver’s clock and that the
sender transmits a long sequence of 1’s followed by a 0. The diagram below
illustrates what might happen.

The time axis in the diagram is decorated with two sets of tick marks.
The tick marks that appear below the axis show the receiver’s view of the
timing in this system. They are spaced in such a way that each tick mark
indicates a point at which the receiver expects the signal representing a new
bit to begin arriving. As such, these points mark the places at which the
receiver might expect a transition to occur. The tick marks above the axis
mark the same thing, but from the sender’s point of view. Their positions
are determined by the sender’s clock which is running a bit faster than the



64 CHAPTER 4. DIGITAL TRANSMISSION

receiver’s. Therefore, the first of the upper tick marks appears a little before
the first lower tick mark, the second upper tick mark appears even farther
before the second lower mark and so on.

The signal being sent in the example is 11111110. Therefore, at the
point where the seventh upper tick mark should appear, we instead see
a vertical line indicating that the flow of energy from the sender to the
receiver suddenly stops at this point. This is the first point at which the
sender could try to automatically synchronize its clock with the sender. If
it tried, it would notice that the transition occurred just a little bit after
it expected the end of the sixth bit and quite a while before it expected
the end of the seventh bit. Therefore, it would probably conclude that the
transition represented the beginning of the seventh bit. In this case, it would
misinterpret the incoming signal as 1111110. Worse yet, it would also decide
that its clock must be running a bit too fast and adjust by slowing it down
a bit, just the opposite of the action needed to correct the problem!

To make this example work, we constructed our diagram based on the
assumption that the rates of the clocks used by the sender and receiver dif-
fered by something in the range of 10%-15%. This is a bit unrealistic. If the
clocks rates differed by a smaller and more realistic percentage, however,
we could still construct an example in which an error would result. All we
would need to do is assume that a much longer sequence of uninterrupted
1’s (or 0’s) was sent before a transition occurred. The problem is that when
such a long sequence with no transitions occurs, any small discrepancy be-
tween the rates at which the sender’s and receiver’s clocks run accumulates.
Eventually, the difference will become bigger than half the time used to send
a single bit. Once this point is reached, confusion is inevitable.

It may, of course, seem silly to worry about such long sequences of 1’s.
Why would any computer just sit and send another computer lots of 1’s?
To see that this is a realistic concern, consider what happens when when
an image is transmitted digitally. In one common scheme for representing
colors in binary, a sequence of 8 bits is used to describe how much of each of
three primary colors is included in the color being described. The result is
that each color is described by a sequence of 24 binary digits. The code for
white in this scheme is 111111111111111111111111. If an image has a white
background, this background will be divided into many individual pixels
each of whose color is described by such a sequence of 24 1’s. If there are a
thousand such pixels (which is a relatively small background area), this will
result in a stream of 32,000 uninterrupted 1’s.

There is another approach to encoding binary that avoids this problem.
The scheme is called Manchester Enconding. The feature required to make



4.2. BASEBAND BINARY ENCODING 65

a code self-synchronizing is that there must be predictable transitions in the
signal at predictable times. Manchester encoding ensures this by represent-
ing information in such a way that there will be a transition in the middle
of the transmission of each binary digit. Like on-off keying, Manchester en-
coding uses a fixed period of time for the transmisison of each binary digit.
However, since there has to be a transition in each of these time slots, 0’s
cannot be distinguished from 1’s simply by the presence or absence of the
flow of energy during the period of a bit. Instead, it is the nature of the
transition that occurs that is used to encode the type of digit begin trans-
mitted. A transition from a state where energy is flowing to a state where
no energy is flowing is interpreted as a 0. A transition from no energy flow
to energy flow is interpreted as a 1.

Visual representations of the transitions involved make
the nature of the system clearer. First, consider the di-
agram at the left which shows a plot of energy flow ver-
sus time during a period when a 0 is being transmit-
ted. During the first half of the time period devoted to
encoding this 0, the sender allows energy to flow to the

receiver. Then, midway through the period, the sender turns off the flow of
energy. It is this downward transition in the middle of the interval devoted
to transmitting a bit that identifies it as a 0.

To send a 1, on the other hand, the sender would block the
flow of energy for the first half of the interval used to transmit
the bit and then allow energy to flow for the second half of the
bit. This pattern is shown in the diagram on the right. Al-
though they are written in energy flow rather than ink, these
two patterns can be seen as the letters of Mancherter encod-
ing’s alphabet. By stringing them together, one can encode any sequence of
0’s and 1’s.

To make this concrete, the diagram below shows how the binary sequence
“10100110”, which we used as an example of on-off keying above, would be
encoded using Manchester Encoding.

Interpreting diagrams showing Manchester encodings of signals can be
difficult. The problem is that our eyes tend to focus on the square bumps
rather than on the transitions. This makes it tempting to see the pattern



66 CHAPTER 4. DIGITAL TRANSMISSION

as an example of on-off keying (in which case it might represent the binary
sequence “0110011010010110”). The trick is to remember that there must
be a transition in the middle of each bit time and use this fact to break the
sequence up into distinct bit times. When this is done, the diagram above
looks more like:

with the vertical dashed lines indicating the boundaries between bit
times. Now, focusing on just the areas between adjacent dashed lines, one
should clearly see the two patterns of energy flow used to represent 0 and 1,
making it easy to associate binary values with each of the patterns as shown
below.

Both on-off keying and Manchester encoding are widely used in practice.
On-off keying is more common in systems with relatively slow transmission
rates. For example, the energy flowing through the cable from your com-
puter’s serial port to your printer or modem probably encodes binary using
on-off keying. The maximum transmission rate through a computer’s serial
port is typically in the range of 100,000 bits per second. If your computer
is connected to an Ethernet, however, the signal traveling on that cable
uses Manchester Encoding. Ethernet transmission rates go as high as 1000
million bits per second.

On-off keying and Manchester encoding are just two examples of a large
class of encoding schemes collectively known as baseband transmission tech-
niques. We will say more about this class once we have introduced examples
of schemes that do not belong to it for the purpose of comparison.

4.3 Multiplexing Transmissions

Our discussion of binary transmission techniques is currently focused on
scenarios in which just one cable connects just one pair of computers. Even



4.3. MULTIPLEXING TRANSMISSIONS 67

such scenarios, however, may involve a little more complexity than expected.
The potential for complexity arises from the fact that a single computer may
be asked to perform several independent tasks involving communications at
the same time. Consider a home computer connected to an internet service
provider (ISP). The user of such a computer might use a web browser to
request that a remote web page be fetched and displayed. Given the limited
speed of such a connection, it often takes seconds or minutes for all the
data needed to display a web page to arrive. During this time, the user
might get bored and switch to another window or application to download
any recently arrived email. If this is done, the data required to display
the web page and the data constituting the user’s email will somehow both
be arriving through the user’s single phone line at the same time! It is
as if four people were holding two conversations on a single phone line at
the same time. The user’s web browser is having one of the conversations
with some remote web server. At the same time, the user’s email program
is trying to hold a conversation with the ISP’s email server. If the phone
company forced its customers to conduct converstations over phone lines in
this way, there would be many unhappy customers very quickly. Computers
somehow manage to conduct such simultaneous, independent conversations
through data transmission lines very frequently. The technique is called
multiplexing. In this section, we will discuss one approach used to realize
multiplexing both to understand how multiplexing is possible and for the
insights it will provide to other aspects of transmission technology.

4.3.1 Time Division Multiplexing

Given that you need to share anything, there is technique you were hopefully
taught before you entered school that can be used to solve the problem
— take turns! Jargon, as I suggested earlier, can be a terrible source of
confusion. Giving a new name to a familiar concept is a sure way to confuse.
The term “Time Division Multiplexing”, which is used by “communication
professionals” to describe the subject of this section, is a glaring example
of unnecessary jargon. It simply means taking turns. While Time Division
Multipleixing is really no more than taking turns, examining how a computer
does this carefully can clarify several aspects of computer communications.

Network Utilization

In pre-school, sharing doesn’t work very well when several children desper-
ately want to play with the same toy at the same time. If the teacher is lucky,



68 CHAPTER 4. DIGITAL TRANSMISSION

the students will take turns but they are unlikely to do so enthusiastically.
Instead, each of the children will be unhappy and impatient when it is some-
one else’s turn. Sharing works much better with things that the children
only use occasionally than with things they crave constantly. A classroom
full of children can share a bathroom (or two) and they don’t become un-
happy or impatient when it is someone else’s turn (with rare and sometimes
disastrous exceptions). Forutnately, in the world of computer communica-
tions, transmission lines frequently fall in the category of things computers
use occasionally rather than the things they crave constantly. Appreciating
this will make it easier to understand how time-division multiplexing works.

Think for a minute about some of the ways your computer uses its com-
munication’s link to respond to your requests. Imagine that you are running
a browser displaying the Yahoo home page. As you sit there looking for the
link to the Yahoo Yellow pages or typing in a search term or scrolling to
see some portion of the page that didn’t fit in your window, your computer
is making no use of its communication’s link at all. Before it could display
the page, the computer had to receive a binary description of the page’s
contents through its link to the network. Once this is done, however, the
network remains idle while you examine the page’s contents.

Suppose that after a few seconds you find and then click on the link to
the Yahoo Yellow pages. The software running on your machine knows how
to get the contents of the page associated with the link you selected. It must
use your machine’s communications link to send a request to the machine
associated with the link from the web page you were examining. The request
message will be quite short. It will basically contain nothing more than the
name of the page you requested by clicking on the link. So, the transmission
line will be in use for a small fraction of a second. Then, your machine will
sit back and wait for the binary data that describes the requested page to
arrive as a message from the web server. Once the requested page arrives,
the network agains becomes idle while you examine the new page’s contents.

The use of the network by a mail program follows a similar pattern.
When you ask the mail program to see if you have messages, your mail pro-
gram sends a small message to your mail server asking it to send summaries
of any new mail messages you have received (basically the sender’s identity
and the subject field).1 Your computer then waits for one or more messages
from the mail server. Once they arrive, it displays the summaries for you to
examine. While you read the summaries, the computer isn’t using its net-

1There are actually several ways in which a mail program can interact with a mail
server. We will describe just one common scenario.



4.3. MULTIPLEXING TRANSMISSIONS 69

work connection at all. When you finally pick a message to read (typically
by clicking on the line describing the message), your computer sends another
brief message requesting the contents of the message. It then waits for the
arrival of the requested message and displays it for you to read. Again, while
you read the message the network connection is not in use.

These examples are intended to illustrate two facts about the way typical
programs use a computer networks. First, most of the time, a computer’s
network connection is unused. Even when you are running what you might
consider a network intensive program like a web browser, it spends a rela-
tively small portion of its time using the network because it spends a very
large portion of its time waiting for the slowest component in the system,
you. Even when a program is “using the network” it actually spends a good
bit of its time waiting for responses from some remote machine rather than
sending messages. Another program on the same computer could be using
the network connection to send outgoing messages during such periods.

The second important characteristic of network communications illus-
trated by these examples is that it is more like a conversation than a mono-
logue (or even two monologues). Rather than producing a long, continuous
stream of binary data for ongoing transmission, most programs use the net-
work to transmit distinct messages, typically as requests for information
from another machine or in response to such a request. It is as if one com-
puter were talking to another. One asks a question and the other answers.
As a result, the data sent by most programs can easily be broken down into
independent packages for transmission.

These considerations should make it fairly clear why using TDM (time
division multiplexing — i.e. taking turns) to share a single line connecting
the computer to the network is a good idea. In all but rare occasions, when
a program wants to use the computer’s network connection it will find that
it is not being used by another program. If it is in use, it is safe to assume
that the program currently using the connection will be done fairly soon. It
is probably either sending a request to some other machine or replying to an
earlier request made by another machine. Once it is done, it will be happy
to let another program takes its turn.

The Role of the Operating System

While all this is true in theory, it is worth remembering the pre-school
environment to appreciate how this is actually done in practice. Pre-school
children are not naturally disposed to taking turns. It is an acquired skill
taught and sometime even imposed and enforced by an adult supervisor.



70 CHAPTER 4. DIGITAL TRANSMISSION

You have probably noticed by now that few computer programs exhibit
social skills as sophisticated as those found in pre-school children. So, it
shouldn’t surprise you that sharing does not come naturally to computer
programs either. A good supervisor is required to make it work.

In fact, nothing comes naturally to a computer program. A program is
just a long, often complicated set of instructions telling the computer how to
react to user requests and changes in the state of the computer itself (like a
disk being inserted or a message arriving through a network connection). If
two or more programs are to agreeably share a network connection without
external supervision, the instructions that constitute each program must
include subsections specifying how to determine if the network connection
is available or in use, how to wait patiently yet check periodically to see
if the connection has become available, how to use the connection when
it is available, how to inform other programs that the connection is being
used and how to inform others when the network connection again becomes
available.

Such a set of instructions would confer on the program skills comparable
to those exhibited by (most) human adults when involved in coversation with
a large group. As a consequence, the instructions would have to be fairly
complex. Somehow, when involved in a group conversation, you know when
you should listen patiently and when you can politely break in to express
yourself. This is a sophisticated skill. If you doubt that this is a complex
skill, just try to write down a brief but complete description of how it is
you actually decide when a speaker has finished expressing a thought and
has no more to say. Such a description can’t be based simply on how long
a speaker pauses (although that is important). You use your understanding
of the content of speech to predict when a speaker is finished. Although
humans perform this task without even thinking about it, it is actually quite
complex. The instructions for a program to interact with other programs in
a similar way would also be complicated.

Even among humans, sharing in a conversation doesn’t always work. Oc-
cassionally two people start talking at the same time or someone misjudges
and cuts another speaker off. Of course, discussions among young children
involve far more cases where several people are speaking at once and much
less awareness that in such situations anyone should stop talking. As a
result, like other forms of sharing among school children, sharing in conver-
sation is often a supervised process. Everyone is taught that if they want to
speak they should raise their hands and wait quietly until the teacher calls
on them to speak. It is much easier to teach children to take turns in this
way. Similarly, it is easier to write programs that share a communications



4.3. MULTIPLEXING TRANSMISSIONS 71

link if some form of “hand raising” is possible.
The key to the system of raising hands in elementary school is the pres-

ence of the teacher who decides which student talks next by calling on one.
In a computer system, this role is assume by the operating system. The
operating system mediates the sharing of the network and of many other
machine resourses by all the programs running on your computer .

An operating system is a very special program. Most programs perform
actions almost exclusively in response to the actions of a human user. The
user selects a menu item, presses a button or types in some information
and the program responds by following instructions that tell it what to do
in response to the user’s actions. These instructions may result in new
information being displayed on the screen, a document being saved on disk,
or a vast variety of other changes in the state of the computer. Operating
systems also perform actions in response to user actions. When you go the
the “File” menu and select “New Folder” on a Mac or Windows machine, it
is the operating system that responds by making appropriate modifications
in your computer’s disk memory to create a new subdivision for files.

What makes an operating systems unusual is that it also performs actions
in response to requests from other programs. The operating system manages
many of the resources available in your computer. It manages the connection
to the network, which is our focus here, and it also manages space for files on
your computer’s disk, access to your printer and many other things. When
a program wants to send a message through the network or create a new file
on the disk, it does not do it directly. Instead, it asks the operating system.

A good analogy for the interactions between normal, “application” pro-
grams and the operating system might be the interactions between a bank
customer and a teller. When you want to take money out of the bank, you
don’t actually walk into the vault or reach into the cash drawer and do it
yourself. Instead, you fill out a withdrawal form or write a check and hand
this “request” to a teller. Similarly, when an application wants to send a
network message it effectively fills out a little form saying what informa-
tion should go in the message and to whom it should be delivered. It then
passes this request on to the operating system rather than directly giving
commands to the computer’s network interface hardware.

Performing all network operations through the operating system makes
it safe and relatively simple for several programs to share a single network
connection. The operating system is the only program that actually uses
the network hardware. All other programs simply make requests to the
operating system when they want to use the network. The operating system
can compile all the requests outstanding and fulfill them one at a time. The



72 CHAPTER 4. DIGITAL TRANSMISSION

other programs simply wait for their response from the operating system.
There is no need to include instructions in each program telling it how
to negotiate with other application programs to determine when it is safe
to use the network hardware. The only interaction required is between
the application program that wants to use the network and the operating
system.

There are other good reasons for arranging all network access through
the operating system. When a program actually interacts with a computer’s
network interface hardware, the precise details of the information that must
be provided by the program and the steps it must perform are dependent
upon the specific interface product being used. If the network interface
components included in your computer were manufactured by Netgear, then
the procedure followed to use it will be different than the procedure used if it
were manufactured by Linksys. If every program that used the network did
so by accessing the network hardware directly, then each such program would
have to include instructions to determine which type of network hardware
was available and instructions to use with each of the many types of network
hardware. Instead, because all network access is mediated by the operating
system, only the operating system needs to be capable of identifying and
interacting with the wide variety of network access hardware that might
be connected to a machine. All application programs need to know is how
to correctly ask the operating system to access the network. This makes
the construction of application programs much simpler. It also means that
in most cases, only the operating system needs to be upgraded when new
network hardware components become available.

Message Addressing

The last two sections provide all the details needed to explain how time divi-
sion multiplexing handles outgoing messages, but they leave unconsidered a
detail needed to understand how multiplexing works for incoming messages.
If a communications line is being shared by several programs running on a
machine, then a message that arrives at the machine might be intended for
any of these programs. When it arrives, such a message will actually be re-
ceived by the operating system rather than any of the application programs,
since the operating system is the only program that actually interacts with
the network hardware. So, the question is how can the operating system
determine for which application program the message is intended.

The operating system be expected to determine a message’s intended
recipient by examining (and understanding) the message’s contents. Each



4.3. MULTIPLEXING TRANSMISSIONS 73

application program is likely to choose is own scheme for encoding the infor-
mation it sends and receives through the network. If the operating system
had to understand all these encodings, it would have to be updated every
time a new program was installed on the system. A much simpler approach
is to arrange for each message to be plainly addressed to a particular recip-
ient.

In our discussion of the problem of determening when messages begin
and end, we introduced the idea of a message frame. The frame is formed
by adding extra information, such as a start bit or message length field,
to the data sent when transmitting a given message. The name “frame”
is based on the analogy that the extra information surrounds the actual
message as a frame surrounds a painting. Another analogy for the role of
the extra information added might be to compare the extra information to
an envelope. When using the postal system, we place our message within an
envelope that carries the message through the transportation process. Like
the extra bits added to network messages, the envelope is usually discarded
by the individual who receives a letter from the post office.

If message framing information acts like an envelope then it is natural
to think of adding addresses to this message framing information. To make
this possible, someone must select a scheme for associating addresses with
the programs running on each machine. Then, when a message is sent to a
machine, the address of the program intended to receive the message would
be included in the message frame.

We all know that there are rules for writing addresses on envelopes. The
parts of the address are supposed to be written on separate lines. The
recipient’s name goes on the top line and the name of the destination city
goes at the bottom. In fact, if you want to know all the rules the US Postal
Service would like you to follow when writing addresses, you can get yourself
a copy of their “Publication 28 - Postal Adressing Standards.” It is only
128 pages long!

Luckily, while there are rules we are supposed to follow when writing
addresses, postal employees are remakably good at interpreting addresses
even if they don’t follow the rules. I’m frequenly amazed that any mail
addressed in my barely legible handwriting ever gets delivered. I know of
one friend who once received a letter addresses only with her first name and
our town’s name. Obviously, I live in a small town, but I was still impressed.
I suspect that one could get away with writing the address on the wrong
side of the envelope, writing the lines in the wrong order and many other
variations and still have your mail delivered (as long as the postal employees
who handled it were in good moods at the time).



74 CHAPTER 4. DIGITAL TRANSMISSION

Computers are not as forgiving as postal employees. If a sequence of bits
arrives at a computer through its network connection, there is no reasonable
way for the computer to guess which bits are the address and which are
the message. The only way it can find and interpret the address is if the
sender and receiver have previously agreed on the format and placement of
addresses. So, to support addresses, the protocols that describe message
frames must specify these details.

To make this idea concrete, imagine how we could add an address field
to the hypothetical frame format we suggested when discussing the idea of
including a message length in the frame. Bascially, just as we had to decide
how many bits to use for the message length, we would have to decide how
many bits to use for the address. In addition, now that we have two sub-
sequences of digits preceding the actual message, we have to decide which
goes first. In this case, their placement doesn’t make much difference, but
if we don’t decide one way or another, the computer receiving a message
won’t know where to look for the length or the address. So, we might decide
to use a 12 digits address sequence and place if after the length sequence.
In this case, we would expect arriving message frames to have the following
basic layout:

This visual representation of the layout of a frame is based on the forms
we all have to complete from time to time that give a fixed number of spaces
to fill in with our first name, our last name, etc. Basically, if this layout
were part of the protocol governing communication between two computers,
then each computer would have to use 1 bit time for a start bit, 10 bit times
for the length of the message, and 12 bit times for the address. Since each
fields length and position is fixed, the receiver can easily extract the needed
information.

Once the address is extracted by the operating system, it will need a way
to associate the address with a particular program running on its machine.
We will consider how this is accomplished in more detail later.


