
Lab 7

Digital Image Processing
Due April 4/5, 11PM 

In this week’s lab, you will construct a program that im-
plements two digital image processing tasks:

1. adjusting the intensity of the colors in an image, and
2. reducing the number of distinct colors used to display 

an image

The interface your completed program should display is 
shown on the right.  The program’s window displays three 
control buttons.  The first loads a new image for process-
ing.  When it is pressed, a dialog box opens to allow the 
user to select an image file.  

Once an image has been chosen, the user can click either 
of the other buttons to perform an operation on the most 
recently loaded image.

When one of the processing buttons is pressed, a new win-
dow opens to display the processed version of the image.  
For example, if you press the “Requantize” button, a win-
dow like the one shown below should appear.  This win-
dow displays a version of the image displayed using just  two shades, black and gray (the role of the slider 
in determining how many shades are used will be discussed below).  

When your program is complete, it will consist of one class that  displays the window with the control but-
tons and one additional class for each of the image processing operations.  All these classes will extend 
GUIManager.

This lab is intended to function as a tutorial.   The handout 
provides detailed instructions on how to construct  the 
program we have described above, introduces the details 
of several new library classes and methods, and explores 
one new feature of the Java language itself.  We describe a 
new class named SImage that supports the manipulation 
of images.  We explain how to manipulate tables of values 
describing the individual pixels in an image using a fea-
ture of Java called arrays.  In addition, we introduce sev-
eral new features of the Java Swing library.  We will show 
you how to use JLabels to display images.  We will in-
troduce a new Swing class named JFileChooser.  When 
you press the “Load Image” button in your program’s in-
terface, we want  your program to provide its user with the 
ability to navigate around the computer’s file system to 
find image files.  The JFileChooser class makes this 
easy to do.   Finally, the image processing operations we 
want you to implement will be controlled by GUI compo-
nents known as sliders, so we will also introduce the 
JSlider class in this lab.

CS 134 Spring 2007

1



Step 0: Gettting Started

While working on this lab, you will need some image files to use as samples.  We have provided a folder 
of such images as a .zip file which you can download from the course web page.  To make it  possible for 
some of the programs you will write during lab to find these images, they must be stored within your 
“Documents” folder for your account (i.e., in the same folder that  contains the folder BlueJ creates for 
your project).  Therefore, to start your work:

• First, start BlueJ and create a new project within your “Documents” folder whose name contains 
“Lab7” and your name (and, as usual, no blanks). 

• Launch Safari and go to the “Lab Schedule and Handouts” page of the CS 134 web site.  (You can 
use another web browser if you prefer, but the following instructions are written for Safari.)

• Find the link that indicates it can be used to download the AllImages folder for this lab.

• Point at the link.  Hold down the control key and depress the mouse button to make a menu appear.

• While still holding the control key and the mouse button, depress the option key.  The item that had 
said “Download Linked File” should now read “Download Linked File As ...”   Select this item.

• Using the dialog box that appears, navigate to your “Documents” folder and save the 
AllImages.zip file in that folder.  (You may want to click on the arrow to the right of the “Save 
As:” text field to make the navigating process easier.)

• Return to the Finder, locate the AllImages.zip file in your “Documents” folder, and double-click 
on it to create an AllImages folder and then throw away the .zip file.

Step 1: Accessing and Displaying an Image

As a start, let’s construct a program that displays just  one of the three buttons that  will appear in your final 
program’s control window, the “Load Image” button.

• First, use BlueJ to add a new GUIManager class named ImageViewer to your project.

• Delete all of the GUI event handling methods that  BlueJ provides in its GUIManager template except 
for the buttonClicked method.

• Add the two import statements

 import java.awt.*;
	

 import java.io.File;

to the beginning of the new file.  

• Next, add code to display two GUI components: a JLabel that displays a short message (“Hi” will do) 
and a JButton with the label “Load Image”.  Associate instance variables with both the JLabel and 
the JButton.  Even though there is only one button now, place it  in a JPanel since you will eventually 
have three buttons and want  them to all be displayed together.  Add the label to the content pane before 
the JPanel that holds the button. 

• Run the program to make sure it displays the label and button as desired.

Now, we want  to add code to your buttonClicked method that  will actually load and display an image.  
Ultimately, the person running the program should be able to select  any image file, but  for now let’s write 
simple code that will always load the image stored in the  “AllImages/MMM.gif” file.

There are two steps you need to perform in buttonClicked to get  this image displayed in your pro-
gram’s window.

CS 134 Spring 2007

2



First, you have to tell Java to convert the data in the image file into an object that  can be used to describe 
the image within your program.  You can do this by constructing an object  of a new class named SImage.  
You can construct  a new SImage by including the name of a file on your disk as a parameter in the con-
struction.  You can therefore load the image into your program by declaring a variable of type SImage 
and adding a statement of the form:

someImageVariable = new SImage( “../AllImages/MMM.gif” );

to the buttonClicked method.  The SImage variable should be declared as an instance variable.  Al-
though you will only use it  in the buttonClicked method at  this point, as you extend this class defini-
tion to support  the “Adjust Levels” and other buttons, you will need to remember the image data between 
button clicks.

Second, you have to tell Java to display the image within a GUI component  in your program’s window.  
That is why we had you include a JLabel in your program’s interface.  JLabels can display images as 
well as text.  Just  as you have used the setText method to make a JLabel display a piece of text, you 
can use a method named setIcon to make a JLabel display an SImage.  Thus, an instruction that looks 
something like:

someJLabel.setIcon( someImageVariable );

should be included in your buttonClicked method to tell Java to display the image you loaded.

• Add the statements and the SImage instance variable described above to your program.

• Run the program and click on the “Load Image” button.

If you did everything right, your program should display a picture of one of your instructor’s grandpar-
ents.  Can you see the family resemblance?

Even if you did everything right, you will notice that  your program’s interface has some obvious short-
comings.  If you stretch the window to make it  larger and smaller you will notice that when it  is too small, 
there isn’t enough room to display the button and when it is too large, you can see the text you displayed 
in the JLabel in addition to the image.  Make the following changes to address these issues.

• Change the text displayed in the JLabel to be the empty string ( “” ).

• Place the JLabel within a new JScrollPane so that  scroll bars will be provided when the window is 
too small.  That is, use an instruction of the form:

 contentPane.add( new JScrollPane( yourLabel ) );

to add it to the display.

• Change the layout manager associated with the content  pane to be a border layout manager by perform-
ing all three of the following steps before you attempt to run your program again:

1. Add the instruction

 contentPane.setLayout( new BorderLayout() );

to the beginning of your program’s constructor.
2. Place the JLabel in the center of the window by replacing the command to add it  to the content 

pane with a command of the form:

 contentPane.add(  ...   , BorderLayout.CENTER );

3. Change the command that added the JPanel containing the “Load Image” button so that the 
panel is placed at the bottom of the window (BorderLayout.SOUTH).

CS 134 Spring 2007

3



Run the revised program.  Things should look pretty good now.  The only remaining issue is that when the 
window is wider than required to display the image, the image will be left-justified rather than centered in 
the window.  You can fix this problem by adding a second parameter to the constructor for your JLabel 
so that it looks like:

new JLabel( "", SwingConstants.CENTER )

This additional parameter tells the label to center its contents.  If you run the program after making this 
change it should display the image just right.

Step 2: Using a JFileChooser

Now that you can display the MMM.gif file, we would like to make your program flexible enough to be 
able to display any image file.  Swing provides a class named JFileChooser that makes it fairly easy to 
do this.

• Add an instance variable declaration of the form

 private JFileChooser chooser = 
             new JFileChooser( new File( System.getProperty("user.dir")) + 
                               "/../AllImages" );

to your ImageViewer class.

• Place the statement

 chooser.showOpenDialog( this );

before the code in your buttonClicked method that loads the MMM.gif picture.

• Replace the String literal “../AllImages/MMM.gif” used as a parameter for the SImage construc-
tion with the expression:

 chooser.getSelectedFile().getAbsolutePath()

• Run your program and click on the “Load Image” button.  A dialog box should appear.

• Select any image file you want using the dialog box.

The instance variable declaration we told you to add, tells Java to create a file chooser. Invoking the 
showOpenDialog method on this object causes it  to display a dialog box and wait for the user to select a 
file.  The parameter

new File(System.getProperty("user.dir")) + "/../AllImages"

provided when we create the chooser tells Java that  the dialog displayed should start in the folder contain-
ing all the sample images we had you download from the course web page ( in a file name, “..” means to 
go up one level in the hierarchy of folders).  The invocation

chooser.getSelectedFile().getAbsolutePath()

returns a string describing the file selected by the user.

When you ran the program, you might  have noticed one issue you must  address if you want  your program 
to be robust.  The dialog box a file chooser displays includes a “Cancel” button.  If the user presses can-
cel, then the getSelectedFile method will not be able to return a description of the file.  To enable 
you to handle this situation, the showOpenDialog method returns a value indicating whether or not  a file 

CS 134 Spring 2007

4



was selected by the user.  The value returned when a file is selected is associated with the name 
JFileChooser.APPROVE_OPTION.  Therefore, you should combine the line that  invokes showOpen-
Dialog and your code to get the image to create an if statement of the form:

if ( chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION ) {

         // ... code to get and display image 

}

Run the program again after making this change to ensure that it handles the cancel button correctly.

Step 3: Slippery Sliders

In the image on the bottom of the first page, we showed a window containing a GUI component we have 
not previously used, the JSlider.  A JSlider is a component  that  provides a simple way for a user to 
graphically select a value by sliding a knob within a bounded interval.  The slider in the example window 
on the first page of this handout  allows the program’s user to determine how many shades of gray will be 
used to display an image.  To introduce you to sliders, we would like you to implement a program that 
uses a slider in a somewhat less sophisticated way.  

The interface for the program we want  you to write is 
shown on the right.  Its purpose is simply to let  a user 
select a number between 0 and 100 using a JSlider 
and to display the number currently selected.  The num-
ber selected is determined by the relative position of the 
slider’s knob.  In the figure on the right, the knob is 
about one third of the way from the left end of the slider, 
so the value displayed is 33, one third of 100. 

To begin, use the “New Class..” button to create a new class that  extends GUIManager.  While we want 
you to write this as a standalone program, by the end of the lab we will incorporate its code as a subcom-
ponent  of the image processing program described at the beginning of this handout.  This subcomponent 
will handle the “Adjust Levels” button.  Accordingly, you should name your new class AdjustLevels.  
You can delete all of the event handling methods in the template that  BlueJ provides for this class.  Add 
an import statement for java.awt.*.

As usual, start  by writing a constructor that displays the basic elements of the program’s interface without 
actually making them work.  This program displays four components.  The number in the middle of the 
screen that displays the current value of the slider is just  a JLabel (set its initial contents to be “50”).  The 
numbers “0” and “100” that appear at either end of the slider are not part of the JSlider itself.  They are 
independent  JLabels.  The slider that  appears between the labels “0” and “100” is a member of the class 
named JSlider.  You should associate instance variable names with the JLabel that  displays the current 
setting of the slider (“33” in the illustration) and the JSlider.

The JSlider constructor expects three integer parameters.  The first  two parameters specify the range of 
values to be associated with the positions of the slider’s control.  We want  your slider to describe a num-
ber between 0 and 100, so these values will be used as the first  two parameters.  The last  parameter speci-
fies the initial value for the slider.  We will start out with the slider centered.  As a result, you should use a 
construction of the form

new JSlider( 0, 100, 50 )

to create your program’s slider.  Associate an instance variable with the slider since later on you will have 
to apply methods to the slider to determine its current setting.

CS 134 Spring 2007

5



As mentioned above, we will adapt the code you are writing now for other purposes later in this lab.  In 
particular, you will have to change the range of values associated with the slider in later versions of this 
program.  As a result, when you create the JLabels that  appear before and after the slider, you should not 
type something like

new JLabel( “100” )

since you would have to remember to replace the String “100” later in the lab.  A better approach is to 
take advantage of the fact  that the JSlider class provides methods named getMinimum and getMaxi-
mum that can be used to determine the range of a slider.  Therefore, if someSlider was the name of your 
JSlider, your JLabel construction should look like:

new JLabel( “” + someSlider.getMaximum() )

The only tricky part about creating this program’s interface is getting the layout  desired.  As mentioned 
above, you will eventually incorporate this program as a part  of your larger image processing program.  
When used in that  context, we will want this window’s content pane to be managed by a border layout 
manager.  Rather than wait until later, we would like you to start using a border layout manager now!

First, set  the layout manager for the program’s contentPane to be a new BorderLayout.  Then, place 
the JLabel used to display the slider’s current value at BorderLayout.CENTER and place the slider 
and its label at  BorderLayout.SOUTH.  Actually, you can only put  one component  in the SOUTH of a 
panel with a BorderLayout.  Therefore, you will have to create another JPanel to hold the JSlider and 
the JLabels that display the range of the JSlider and then place this additional JPanel in the SOUTH 
region of the content pane.  Finally, add the value SwingConstants.CENTER as a second parameter in 
the construction that creates the JLabel in the center of the window.

• Run your program to verify that you have created and correctly displayed all the desired components.

Now, we want to make the slider work.

Whenever a slider is adjusted, any code you place in a method named sliderChanged will be executed.  
You should define such a method.  Its header will look like:

public void sliderChanged( ) {

Within its body you should place code to update the text of the JLabel displayed in the center of your 
program’s window.

You can determine the value associated with a slider by using a method named getValue.  This is an 
accessor method that returns the integer value associated with the current position of a slider’s control.  
For example, the statement

int currentValue = someSlider.getValue();

could be used to associate the updated value of a slider with an integer variable.  Using this method, write 
a definition of sliderChanged that will update the number displayed by your program each time the 
slider’s knob is moved.  You will need to concatenate the int value with “” when you use it  as a parame-
ter of the setText method just as we suggested you do in the JLabel construction shown above.

Step 4: Shades of Gray

When an image is represented within a computer, the colors of the parts of the image must be represented 
in binary.  This is accomplished by dividing the picture into a grid of tiny squares called pixels and then 
using numbers encoded in binary to describe the color of each pixel.  For color images, several numbers 
are used for each pixel.  For grayscale (or monochrome) images, things are a bit simpler.  A single number 
can be used to describe the brightness of each pixel.  Small numbers describe dark pixels.  Larger num-
bers are used to describe brighter pixels.  A black pixel’s shade is 0.  The brightness numbers are ulti-

CS 134 Spring 2007

6



mately encoded in binary using 8 bits.  As a result, the largest number allowed is 255 which is one less 
than 28.  The number 255 is used to describe white pixels.  A dark gray pixel might have a brightness 
value of 80 and a light gray pixel’s brightness might be 190.

For example, if you look closely enough at  the left eye of the gentleman pictured on the front of this 
handout:

 you will discover that it is really composed of distinct squares of varying shades of gray as shown below:

 

Within the computer, each of these gray squares is represented by a single number describing its bright-
ness.  The table below, shows all of the numeric values that would be used to describe the image of the 
eye.

233 232 223 210 198 202 214 219 226 229 233 240 248 248 247 241 238 242 239

218 201 173 143 120 122 131 148 173 194 204 212 224 242 246 242 239 239 235

218 172 137 106 83 81 78 91 114 143 177 190 190 208 229 234 232 233 233

234 188 142 110 99 100 120 148 162 167 174 188 189 192 196 219 226 229 233

242 213 166 123 115 116 115 141 151 158 160 173 185 192 189 201 219 229 231

245 218 172 120 112 112 113 97 97 98 111 124 147 184 189 182 210 228 232

247 223 165 134 146 129 126 109 113 91 120 118 104 136 172 175 204 225 232

246 226 186 161 139 155 197 141 108 131 204 173 89 80 130 153 165 215 230

246 231 215 196 194 183 173 178 189 199 201 198 168 125 107 139 147 187 222

248 238 233 220 215 204 183 168 163 164 174 188 205 205 175 168 175 191 217

250 239 233 231 231 230 221 213 205 188 181 193 211 219 221 222 221 219 224

250 241 230 231 231 239 234 228 230 230 228 231 231 234 238 239 238 232 227

Earlier, we saw that we could construct  an SImage by providing a file name to the SImage constructor.  
You can also construct an SImage by providing a collection of numbers describing the brightness of the 
pixels of the desired image.  In general, this can be difficult to do since many values may be required to 
describe even a relatively small image.  There is, however, one special case where it  is quite easy to do.  
This is the case where all of the pixels should have the same brightness.

To illustrate the process of creating such an image, we would like you to modify your AdjustLevels 
program so that it creates and displays a monotone image whose brightness is controlled by the slider dis-

CS 134 Spring 2007

7



played at  the bottom of its window.  A snapshot  of what the 
program’s window might look like is shown on the left.

First, change the range associated with the JSlider from 0-
100 to 0-255.

Next, in the sliderChanged method, construct an SImage 
specifying the current setting of the JSlider as the bright-
ness value.  This can be done using a construction of the 
form

     new SImage( width, height, brightness )

Make the SImage’s width be 256 and its height be 100.  Associate the SImage with a local variable 
name.  Then, use the setIcon method of the JLabel that  appears in the center of your AdjustLevels 
window to display the new SImage in your program’s window.

Compile and run your program.  Test it by moving the slider back and forth.

Step 5: Thinking Inside the Box

We would like you to draw a frame around the gray images 
you create as shown on the right  (with the frame actually 
surrounding a gray rectangle whose color closely matches 
the window background).  This will require a four step 
process.  First, you will have to create an monotone SImage 
as you did in step 4.  Next, you will use a method provided 
with the SImage class to access a table containing all of the 
pixel values for the SImage.  Then, you will write  code to 
modify the values describing the brightness of the pixels at 
the edges of the image to make them black.  Finally, you 
will make and display a new SImage using the modified 
table of pixel values.

This process involves using a new feature of the Java language called an array.  Arrays in Java are objects 
that can be used to represent lists or tables of other values or objects.  The SImage class provides a 
method named getPixelArray that returns an array containing the integer values describing the bright-
nesses of all of the pixels in the SImage.  For example, if somePic was a name associated with an 
SImage, you could use the assignment

pixels = somePic.getPixelArray();

to associate the name pixels with the collection of pixel brightness values.

The notation used in Java and many other programming languages to work with arrays evolved from no-
tations mathematicians use when working with matrices and vectors.  For example, in a linear algebra 
textbook you are likely to find a definition that reads something like:

Definition 1.1   A rectangular collection of m • n values of the form

 

A =

  

A1,1  A1,2       . . .              A1,n
A2,1  A2,2       . . .              A2,n
 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  
Am,1 Am,2      . . .              Am,n

is called an m by n matrix.  

CS 134 Spring 2007

8



When working with such a matrix, we use the name of the matrix, A, by itself to refer to the entire collec-
tion and we use the name together with two subscript value, such as A3,5 to refer to a particular element of 
the collection.  Similarly, with Java arrays, we can use the name of an array itself, pixels for example, to 
refer to the entire collection, and the name together with subscript values to select  a particular entry.  In 
Java, however, the values that  specify the position of the desired element  are not  actually written as sub-
scripts.  Instead, the values are placed in square brackets after the name of the array.  For example, we 
could write

pixels[3][5] = pixels[3][5] + 1;

to make the brightness value associated with the pixel at  position 3,5 just a tiny bit larger.  Since they are 
not actually positioned as subscripts, we often refer to the values in square brackets as indices rather than 
subscripts.

Java’s conventions for numbering the elements of an array are slightly different  from those used with ma-
trices.  Java starts counting at 0, and, when dealing with images, the first  index indicates the horizontal 
position within the image and the second index indicates the vertical position.  That is, we might replace 
the tabular presentation of the matrix in Definition 1.1 with:

pixels =

  

pixels[0][0]    pixels[1][0]    . . .   pixels[m-1][0]
pixels[0][1]    pixels[1][1]    . . .   pixels[m-1][1]
  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 

pixels[0][n-1]  pixels[1][n-1]  . . .   pixels[m-1][n-1]

Finally, Java also uses the square brackets when describing the type of a matrix.  We must  describe types 
when we declare variables.  For example, we use the word int to describe the type of x in the declaration

private int x;

The collection returned by the getPixelArray method is a table of int values rather than a single int.  
Therefore, to correctly declare a name like pixels that will be associated with such a table, we write

private int [][] pixels;

Therefore, the code:

int [][] pixels = somePic.getPixelArray();

int y = 0;
while ( y < somePic.getHeight() ) {
	

 pixels[0][y] = 0;
	

 y = y + 1;
}
somePic = new SImage( pixels );

will take an existing SImage associated with the name somePic, and create a new image that  is identical 
to the original except  that  it  has a black line along its left  edge.  The first  line simply associates an array 
containing the brightness values for the original image with the name pixels.  The loop then sets each of 
the brightness values associated with the pixels with x coordinate 0 (i.e., the left  edge of the image) to 0 
(i.e., black).  This does not actually modify the image since the array produced by getPixelArray is a 
copy of the brightness values.  The last  statement creates a new image with the modified brightness values 
and makes somePic refer to this new image.

• Add this code to the instructions of your sliderChanged method.  

CS 134 Spring 2007

9



• Compile and run this new class.  It should draw a black line at the left edge of the rectangle produced 
when the slider is moved.

Now, add additional code to draw the other lines required to complete a rectangular frame around the im-
age.  You can do this by writing four separate loops or just  two loops.  (If you use just two loops, one will 
draw both horizontal lines and the other both vertical lines.)  You will discover one odd thing about  the y 
coordinates used with an array of pixel values.  The x-axis works as you would expect.  The left edge of 
the image has x coordinate 0 and the right  edge has x coordinate 255.  On the other hand, the y-axis seems 
to be upside down.  The y coordinate 0 is associated with the top of the image while the bottom of the 
image has y coordinate 99.

Compile and test your program until it draws a nice box around your gray color sample. 

Step 6: A Little Housecleaning

It  would be nice if the gray rectangle and the black box appeared as soon as you ran the program.  There 
is a simple way to do this.  Add an invocation of the form:

this.sliderChanged();

as the last  line in the AdjustLevels constructor.  This tells Java to execute the code in the slider-
Changed method (even though the slider hasn’t actually been moved).  Make this change and then com-
pile and test again.

At this point, the sliderChanged method of your AdjustLevels class is getting a bit crowded.  It 
contains quite a few lines of code to manipulate the pixel array.  Before moving on, you should simplify 
this method’s body by moving the code to modify the pixel array into a private method within the Adjus-
tLevels class.  The method should be named makePixelArray.  It  should take an int value which 
will be equal to the setting of the slider as a parameter and return a pixel array describing an appropriate 
gray rectangle with a black border.  Most  of the code that  had been in sliderChanged will be moved to 
this new method.  Within the body of sliderChanged, you should invoke this method, construct an 
SImage with the array the method returns, and then display the SImage as the icon of your JLabel.

Make these changes and then compile and test the class.

Step 7: Making the Grade(ient)

Currently, the image produced by your makePixelArray 
method is pretty simple.  It contains at  most two shades of 
gray, the black border and whatever shade is selected using the 
slider to fill the interior of the rectangle.  To learn a little more 
about manipulating pixel values, let’s make an image that con-
tains every possible shade of gray.  In particular, we want you 
to modify your makePixelArray method so that  it  will create 
a pixel array that describes a gradient like that shown in the 
window to the right.

The image drawn in this window contains all 256 possible shades of gray.  The left edge of the rectangle 
is solid black.  The right  edge is white.  Each of the lines between these two extremes is drawn with a 
color one shade lighter than the line to its left.  (For now, we will just ignore the position of the slider.  
That is, initially your program should draw the same gradient no matter how the slider is set.)

If you think about how we just described the gradient, you will realize that  every pixel should have a 
brightness value equal to its x coordinate.  The pixels on the left  edge have x coordinate 0 and they are 
supposed to be black which corresponds to a brightness value of 0.  The pixels on the right edge are sup-

CS 134 Spring 2007

10



posed to be white.  This is described by the brightness value 255 which happens to be the x coordinate of 
all of the pixels on the right  edge (since earlier we cleverly told you to make the SImage 256 pixels 
wide).  This means that you can set each pixel to the correct color by executing a statement like:

pixels[x][y] = x;

for all possible values of x and y.

To execute this statement for all possible x and y values you will use two while loops.  This time, how-
ever, instead of coming one after another, one of the while loops should be nested inside of the other.  One 
of the loops will start  by setting a local variable (probably named) x to 0 and will then add 1 to x each 
time it  executes until the value of x reaches the width of the image.  The other loop will step through all 
values of the y coordinate from 0 to the height of the image.  The inner loop will sit within the outer loop 
and the statement that sets array elements equal to x will be placed within the inner loop.

These nested loops should replace the loops that draw the frame.  Therefore, while you may want  to keep 
the loops that  draw the frame as examples while you write the loops that  produce the gradient, once the 
code to draw the gradient is complete you should delete the loops that draw the frame. 

• Write the nested loops.  Compile and test your program until it draws the desired gradient.

Once you can draw a gradient that  spans all the shades from black 
to white, we would like you to change the code you have written 
just  a bit so that the gradient produced will go from black to the 
brightness value selected by the slider.  In the figure on the right, 
for example, we have drawn a gradient that is black on the left 
edge but has the brightness value 170 on the right edge.

Drawing such a gradient  is mainly a matter of scaling.  Suppose 
that the slider’s knob was set two thirds of the way from the left.  
Then the brightness value of the right edge of the gradient  would 
be 170 which is 1/3 of 255, the x coordinate of the right edge.  In 
addition, we would want  all of the other pixels in the image to have brightness values that  were roughly 
equal to 2/3 their x coordinates.  That is, the brightness of a pixel with x coordinate 90 should be 60 and 
the brightness of pixels with x coordinate 210 should be 140.  This should be all that you need to know to 
modify the code you just wrote, but  you will have to be a little careful writing the code because Java does 
arithmetic a little oddly.

Suppose, as suggested above, that  the slider’s value was set  to 170 and you tried to compute the value of 
the Java expression

someSlider.getValue()/255

According to the normal rules for division, this expression should produce the value 2/3 or .6666667.  
Unfortunately, in Java, it produces the value 0.  This is because both of the values involved in the opera-
tion are integer values, and Java therefore believes it  has to produce an integer answer.  As a result, if you 
try to use the expression

(someSlider.getValue()/255)*x

in your program, its value will almost always be 0 (the one exception is when the slider’s value is 255).

Luckily, there is a simple way around this.  Suppose that you instead evaluate the expression

x*someSlider.getValue()/255

CS 134 Spring 2007

11



This time, Java will first  multiply the value of the slider and the value of x.  Suppose that x is 100 and the 
slider’s value is 150.  The result will then be 15000.  The value associated with 15000/255 following the 
normal rules of arithmetic is 58.823.  When we evaluate this expression in Java, it  still will give us an in-
teger.  Therefore the value produced will be 58.  This isn’t quite the right  answer, but  it  is much closer 
than 0.  Therefore, as long as you use an expression of this second form, you should be able to create the 
desired gradient.

The lesson is to be very careful about  the order in which you write operations when using division with 
integers in Java.

Step 8: A Little More Housekeeping

A little later in this lab, we will have you write another class that is very similar to the current  version of 
the AdjustLevels class.  Before that, however, we want you to make some additional changes to Ad-
justLevels.  Therefore, at  this point we would like you to save a copy of your AdjustLevels class 
under a different name.  To do this:

• Click on the “New Class” button and create a class that extends GUIManager named Quantizer.

• Copy and paste the entire code of your AdjustLevels class so that it  replaces the template Java pro-
vides for your new Quantizer class.

• Within the window for the new Quantizer class, edit the text by replacing the name “AdjustLev-
els” that appears on the first line of the class and of its constructor with the name “Quantizer”.

• Save the new class.

Now, close the Quantizer class window and go back to working with the AdjustLevels class.

Step 9: Adjusting Image Levels

While it  may be fun to have a program that  can display gradients, we suspect  you are beginning to wonder 
when we are going to get  around to implementing the image processing operations we promised on the 
first  page of the handout.  Luckily, you are are now at the point where we can easily use the AdjustLev-
els class you have developed to adjust the brightness levels of an actual image.  We will work with gray-
scale images first.  Later, we will adapt the program to work with color images.

• First, open the window containing your ImageViewer class from the first two steps in this labs so that 
we can modify it to use the AdjustLevels class.

• Add a new button with the label “Adjust Levels” to the interface of your ImageViewer.  Initially, this 
button should be disabled.

• Add an if statement  in the buttonClicked method so that it  only loads a new image when the “Load 
Image” button is clicked.  Also add code to enable the “Adjust Levels” button when an image is loaded.

• Add an else to the if statement in buttonClicked so that  the program creates a new AdjustLevels 
window when the “Adjust Levels” button is pressed.

• Compile and run the program to make sure that these changes work.

When you press “Adjust Levels”, the window that  appears will display a gradient.  We would like it to 
instead display a modified copy of the image that was loaded within the ImageViewer.  To do this, you 
will have to make a few more changes.

• Add an SImage instance variable to the AdjustLevels class.

CS 134 Spring 2007

12



• Change the AdjustLevels constructor to expect  an SImage parameter and set the SImage instance 
variable equal to this parameter within the constructor body.

• Pass the image loaded by the ImageViewer class to the AdjustLevels constructor when the “Adjust 
Levels” button is pressed.

We are almost  there.  The sliderChanged method in AdjustLevels displays an image constructed 
using the pixel array created by your makePixelArray method.  We want to change this method so that 
the array it produces is derived from the SImage passed to the AdjustLevels constructor.

• Your makePixelArray method starts by constructing a new Simage and associating that image’s 
pixel array with a local variable.  Delete these two line from the method and instead declare what  had 
been the local variable name for the pixel array as a second formal parameter for the method.  That  is, 
instead of creating its own pixel array, the method will be passed a pixel array as a parameter.

• You probably used the expressions someImage.getWidth() and someImage.getHeight() within 
the conditions of the loops in your method.  These expressions refer to the SImage you are no longer 
creating!  To avoid this, add two integer parameters named width and height to your makePixelAr-
ray method and use these in place of getHeight and getWidth in your loop conditions.

• Change the name of the method to adjustPixelArray.

The SImage class provides methods named getPixelArray, getWidth and getHeight.  You should 
use these methods to determine the three additional parameters passed from your sliderChanged 
method to your adjustPixelArray method..

• Using the getPixelArray method, modify your sliderChanged method so that  it  passes the pixel 
array of the SImage that was passed to the AdjustLevels constructor as a parameter to the adjust-
PixelArray method.

• Using getWidth and getHeight, modify your sliderChanged method so that  it  passes the width 
and height of the SImage that was passed to the AdjustLevels constructor as the third and fourth 
parameters to the adjustPixelArray method.

The last step is the fun one.  We want  you to scale the brightness value of each pixel of the image passed 
to AdjustLevels just as you scaled the brightness values in your gradient based on the setting of the 
slider.  That is, if a pixel’s brightness is “b” then we want to replace it with

b*someSlider.getValue()/255

• Using this tip, change the loop in your adjustPixelArray method so that it scales the brightness val-
ues in the pixel array based on the setting of the slider.  

• Compile and test  your work by loading an image with the ImageViewer class and then pressing the 
“Adjust Levels” button.  Only work with grayscale images from our collection at this point.

Step 10: Quantization

Early in the course, we emphasized that a defining feature of digital communication was that it  depended 
on a finite set  of discrete symbols to encode information.  In the domain of images, this principle of digi-
tal communications manifests itself in the fact that  we have been using 256 levels of brightness to de-
scribe images.  Physically, brightness is a continuous phenomenon.  For any two levels of brightness there 
are additional levels of brightness between them.  In the images we have been working with, however, 
there are no brightness levels between 254 and 255 or between 40 and 41.  Brightness has been quantized.

CS 134 Spring 2007

13



This means that a digital representation of an image cannot always be exact.  If the actual brightness of a 
pixel in a scene falls between 40 and 41, we will have to approximate this with either the value 40 or 41.  
Of course, we can make our images more accurate by using more levels.  Instead of distinguishing 256 
levels of brightness we could use 1000 levels or 10000 levels.  The more levels we use, however, the 
more bits will be required when the image is encoded in binary.  There is a tradeoff, therefore, between 
the accuracy of a digital image and the number of bits required to store it or transmit it.

To explore this tradeoff, we would like you to write another class that will show how images would look 
if they were displayed using a smaller set of brightness levels.  As you might have guessed, that  is why 
we had you save a copy of your AdjustLevels class under the name Quantizer a few steps ago.

The code we had you save as the Quantizer class creates a gradient  of shades of gray such that the 
brightest shade displayed is determined by the setting of the slider in its window.  If you forget how this 
works, create an instance of the class to remind yourself.

We want you to change the code in this class so that  it  display a different  sort  of gradient.  The figure on 
the right illustrates what  we have in mind.  The slider is set at 5.  The gradient shown, therefore includes 5 
levels of brightness that might be used to represent  images if we used only 5 levels of brightness instead 
of the usual 256.  The brightness levels shown are determined by dividing the usual range of 256 bright-
ness levels into 5 roughly equal subranges.  While it  might be best  to use the brightness level at the mid-
dle of each range, for the sake of simplicity, we have instead used the smallest  brightness value in each 
range.  The five shades shown are therefore brightness 0, brightness 51, brightness 102, brightness 153, 
and brightness 204.

Suppose that  we want  to use N different  shade of brightness.  
Then 256/N will tell us how wide each band of our gradient 
should be.  Now, suppose that  we want  to decide what color 
to use for the line of pixels at position x.  If we divide x by 
256/N, Java will give us the integer portion of the result of 
this division.  For the first 256/N values of x this will be 0, 
for the next 256/N values it  will be 1, and so on.  If we mul-
tiply this number by 256/N the result will be the level of 
gray we should actually use for the x coordinate.  That  is, 
you should:

• Define a local variable with a name like widthOf-
BrightnessBands and initialize its value to be:

 256/someSlider.getValue()

• For each pixels, you should then set its brightness to its x coordinate divided by and then multiplied by 
widthOfBrightnessBands.

Before you attempt to run your program change the range of the slider from 0-255 to 1-255 since trying to 
draw an image using 0 colors is not a good idea.

• Compile and test your program until it draws  nice, segmented gradients.

Once this works, we want you to transform your Quantizer class into a class that can be used to quan-
tize the pixels of a grayscale image rather than to just  draw a gradient.  The process will be nearly identi-
cal to what you did with the AdjustLevels class in Step 9.

• First, add a “Requantize” button to the ImageViewer class.  Arrange for it  to be enabled and disabled 
like the “Adjust Levels” button.

CS 134 Spring 2007

14



• Next, add code to the buttonClicked method in ImageViewer so that it will construct  a new Quan-
tizer when the “Requantize” button is pressed.  It should pass the currently loaded image as a pa-
rameter in the Quantizer construction.

• Then modify the Quantizer class so that  its constructor expects an SImage as a parameter and associ-
ates this SImage with an instance variable.

• Change the makePixelArray method into an adjustPixelArray method by making it  accept a 
pixel array and the width and height  of the image corresponding to the pixel array as parameters instead 
of creating its own monotone SImage and getting that image’s pixel array.

• Change the code in the loop within adjustPixelArray so that it  quantizes values obtained from the 
pixel array instead of the x coordinates of the pixels.

• Modify the sliderChanged method so that it  passes to adjustPixelArray the values obtained by 
invoking the getPixelArray, getWidth, and getHeigth on the SImage that  was passed to the 
Quantizer constructor.

Compile and test this new class (using only grayscale images).

Step 11: A Horse of a Different Color

Let’s add a little color to this program.

Each pixel of a color image is described using three values that describe the brightness (or intensity) of 
each of the primary colors that  make up the actual color of that  pixel.  There is one value that  specifies 
how much red is in the pixel, one value that  specifies how much green, and one value that specifies how 
much blue.  Each of these values falls between 0 and 255.

The SImage class lets you access the values that describe the intensity of each primary color in all of the 
pixels of an image as a single pixel array.  To do this, you simply include a parameter that  specifies which 
color you are interested in when you invoke the getPixelArray method.  For example, to get  the 
brightness values that describe how much red is used in each pixel of an SImage you could say:

someSImage.getPixelArray( SImage.RED )

Similarly, you can get pixel arrays describing the greenness or blueness of the pixels with invocations of 
the form 

someSImage.getPixelArray( SImage.GREEN )

and

someSImage.getPixelArray( SImage.BLUE )

In addition, if you have three pixel arrays that describe the rednesses, greennesses and bluenesses of the 
pixels of an image, you can make a new SImage out of these three arrays by saying:

new SImage( rednessArray, greennessArray, bluenessArray )

As a result, you can now fairly easily modify your AdjustLevels and Quantizer classes so that  they 
will work correctly on color images.  For each class:

CS 134 Spring 2007

15



• Apply the adjustPixelArray method you have already written to each of the three arrays obtained 
by invoking getPixelArray on the SImage passed to the constructor using parameter values 
SImage.RED, SImage.GREEN, and SImage.BLUE.

• Pass the three arrays returned by the three invocation of adjustPixelArray as parameters to the con-
struction of a new SImage.

• Display the image produced using the setIcon method of your JLabel.

• Compile and test the modified class using the ImageViewer class.

Step 12: Want More Fun?

Now that you know how to use 
the tools, there are many ways 
you could extend this program.  
A simple improvement would 
be to let  the user adjust  the lev-
els of the three primary colors 
in an image independently.  
That is, you could revise your 
AdjustLevels class so that 
its interface looked like the 
window shown on the right.

You could also add completely 
new operations to the Im-
ageViewer class.  Use your 
imagination (or if you are tired 
enough, just  turn in what  you 
completed in the first 11 steps).

CS 134 Spring 2007

16



Submission Instructions
As usual, make sure you include your name and lab section in a comment in each class definition.  Find 
the folder for your project.  Its names should be something like FloydLab7.

• Click on the Desktop, then go to the “Go” menu and “Connect to Server.” 
• Type “cortland” in for the Server Address and click “Connect.” 
• Select Guest, then click “Connect.” 
• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.

You can submit your work up to 11 p.m.  two days after your lab (11 p.m.  Wednesday for those in the 
Monday Lab, and 11 p.m.  Thursday for those in the Tuesday Lab).  If you submit and later discover that 
your submission was flawed, you can submit  again.  The Mac will not let  you submit  again unless you 
change the name of  your folder slightly.  Just  add something to the folder name (like the word “revised”) 
and the re-submission will work fine.  

Grading
Completeness (14 points) / Correctness (6 points)

• File dialog displayed when Load button pressed
• Images displayed correctly in ImageViewer
• ImageViewer buttons create appropriate processing win-

dows.
• AdjustLevels reduces brightness of images
• Quantizer correctly requantizes images

 Style (10 points)
• Commenting
• Good variable names
• Good, consistent formatting
• Correct use of instance vari-

ables and local variables
• Good use of blank lines
• Uses names for constants

Appendix:  Summary of New Library Features Used in this Lab

Accessing or Creating an Image:
new SImage( someString )

• The String passes as an argument can be a file name or the URL of an image on the web.

new SImage( width, height, brightness )

• Creates a monotone grayscale image with the width, height, and brightness specified.

new SImage( somePixelArray )

• The image produced will be a grayscale image.  The values in the pixel array are treated as 
the brightness values for the individual pixels of the image.

new SImage( somePixelArray, anotherPixelArray, oneMorePixelArray )

• The image produced will be a color image.  The first array specifies the redness of the pix-
els, the second specifies the greenness, and the third specifies the blueness.

CS 134 Spring 2007

17



Accessing the dimensions of an SImage

someSImage.getWidth()
someSImage.getHeight()

• These methods return the requested size of the image measured in pixels.

Accessing a Pixel Array

someSImage.getPixelArray()

• Returns a pixel array describing the brightness of the pixels of the image.

someSImage.getPixelArray( someColor )

• Returns a pixel array describing the amount  of red, green, or blue in each pixel of an image 
depending on the value of its parameter.  The valid values of the parameter are 0 (for the 
redness values), 1 ( for greenness), and 2 (for blueness).  The names SImage.RED, 
SImage.GREEN, and SImage.BLUE are associated with the values 0, 1, and 2 respectively so 
that one can say things like

someSImage.getPixMap( SImage.RED )

Displaying images in JLabels
someJLabel.setIcon( someSImage );

• The specified image will appear within the JLabel.

Creating Sliders
new JSlider( minimumValue, maximumValue, initialValue );

• The parameters determine the values that  will be associated with the slider as its knob is 
moved by the user. 

Accessing  Slider Values
someSlider.getValue()

• Get the value associated with the current position of the slider’s knob. 

someSlider.getMinimum()

• Get the minimum value associated with the slider. 

someSlider.getMaximum()

• Get the maximum value associated with the slider. 

Event Handling for Changes in a Slider’s Position
public void sliderChanged() { ... } 
public void sliderChanged( JSlider which ) { ... }

• Instruction placed within the body of a sliderChanged method will be executed whenever 
the knob of a slider in a GUIManager’s content pane is moved. 

CS 134 Spring 2007

18


