
Lab 5

TOC to Me
IM Client Implementation --- Part 2

Due March 7/8, 11PM

In this week’s lab we will finish work on the IM client programs you started in the last lab. You will add one
significant feature to your program. It will now support multiple chat windows. In addition, you will re-
structure the internal organization of your program, using classes to more logically organize the instructions.

The chat client you constructed in the last lab displayed all messages sent and received in a single
JTextArea. Most real IM clients create a separate window for each buddy with whom messages are
exchanged. We would like you to extend your chat client so that it uses multiple windows in this way. Each
of these windows will have its own JTextArea for displaying the messages exchanged and a
JTextField in which your program’s user can enter messages to be sent to the buddy associated with the
window. In addition to these chat windows, your program will display a control window used to log in, log
out, and to start a conversation with a selected buddy. A sample of what some of these windows might look
like is shown below.

Class Structure
The hardest part of writing a program composed of many classes is usually deciding what functionality to
include in each class. This requires deciding which portions of the information needed by the entire program
will be kept in each class. This determines what instance variables and what methods are declared in each
class.

To simplify the process of writing your first multi-class program, we will provide you with suggestions for
the instance variables and methods for each of the classes you should define. As you follow our guidelines,
recall that one major goal when dividing a program into classes is to make the structure of the program as
clear and logical as possible.

CS 134 Spring 2007

1

For this program we would like you to define three separate classes:

• IMControl: This class will create the control window that displays the fields used to enter the user’s
screen name and password, the login and log out buttons, the menu of buddies and the field and button
used to add names to the buddy menu.

• ChatWindow: This class will be used to create a window for each conversation that takes place while
running your program.

• TOCServerPacket: The objects described by this class will not appear as new windows on your screen.
Instead, the purpose of this class is to provide a better way to organize some of the code you wrote for the
last lab. In particular, this class will provide methods that do the work of extracting screen names and
other subfields from the packets sent by AOL’s IM server.

IMControl
Your IMControl class will be quite similar to the class that was your entire program last week. The class
will still contain most of the instance variables used to refer to GUI components in last week’s lab. You will
still need the text fields and buttons used for entering login information and new buddy names along with the
menu used to select a buddy to talk to. The components used to enter messages you want to send and to see
the messages received, however, will be moved to the ChatWindow class. This class will also still have an
instance variable associated with the connection to the AOL server.

The only significant addition to the instance variables declared in IMControl will be a variable of type
HashMap used to keep track of which ChatWindows are associated with which ongoing conversations. The
details of using a HashMap are discussed later in this handout.

You will make three main changes to the methods you defined last time. First, the if statement in
buttonClicked that specified how to send a message when the user clicked the send button will be
replaced by code to create a new ChatWindow when the user clicks the button to start a new conversation.
Second, the code in dataAvailable that displayed an incoming message will be replaced by code to notify
the appropriate ChatWindow that a message has been received. Finally, the code within dataAvailable
that examines the subparts of packets received from the server will be revised to use the methods of the
TOCServerPacket class.

By the end of this week’s lab, there will be at least three places where you need to normalize screen names.
Rather than making three copies of the code to do this, you should define a private method named normal-
ize that takes a screen name as a parameter and returns the normalized version of the argument. You should
be able to do this fairly easily using the code you wrote to normalize screen names for last week’s lab.

ChatWindow
Your ChatWindow class should be designed to create a separate window for each ongoing IM conversation.

The constructor for a new ChatWindow should expect three parameters: the normalized screen name of your
program’s user, the normalized screen name of the other person involved in the conversation, and the FLAP-
Connection your program has established with the AOL server. Thus, the construction of a new ChatWin-
dow might look like:

ChatWindow newConversation = new ChatWindow(myName, buddy, toAOL);

The ChatWindow class will extend GUIManager. As a result, you can create a new window by invoking
createWindow in its constructor just as you invoked createWindow in the constructors of your earlier
programs. Your ChatWindow constructor should create a JTextArea in which messages can be displayed
and a JTextField in which message can be entered, and add these components to the content pane. Both
of these components will be used by methods defined within the class and should therefore be associated
with instance variables. In addition, the methods you define will need to use the two screen names and the
network connection that are passed as parameters to the constructor. Accordingly, you should define instance

CS 134 Spring 2007

2

variables to refer to these items and include assignment statements within your constructor to associate the
instance variable names with the parameter values.

You will only need to define two methods in this class:

• A textEntered method should be defined. The code in this method will be automatically executed
whenever the user presses return after typing a message into the window’s text field. The code in your
textEntered method should send the contents of the text field as an IM message and display it in the
ChatWindow’s text area.

• A messageReceived method should be defined to handle messages received for this conversation from
the AOL server. These messages will actually first be accessed by invoking in.nextPacket within the
dataAvailable method of your IMControl class. The code in dataAvailable will need to determine
which ChatWindow should display the message and then invoke the messageReceived method of that
ChatWindow, passing the message as a parameter. The parameter passed to messageReceived should
be a TOCServerPacket rather than a String.

TOCServerPacket
The TOCServerPacket class is intended to provide convenient access to the fields of a packet received
from the AOL IM server. Your TOCServerPacket class should provide a constructor and seven public
methods: isError, isBuddyUpdate, isIncomingIM, getBuddyName, getBuddyStatus, getError-
Code, and getMessage.

The constructor takes the text of a packet received from the server as its parameter. It will store that text in
an instance variable for later processing. That is the only instance variable you will need to declare in the
TOCServerPacket class.

To construct a TOCServerPacket, you will simply provide a string containing the packet received from the
server as a parameter in a TOCServerPacket construction. For example, if the statement

String packetContents = toAOL.in.nextPacket();

were used to access a packet from the server, then the construction

TOCServerPacket currentPack = new TOCServerPacket(packetContents);

could be used to construct a TOCServerPacket for the data received.

The “is” accessor methods, isError, isBuddyUpdate, and isIncomingIM, produce boolean values.
They will be used to determine the type of packet received. For example, if the following text was received
from the server:

IM_IN2:somebuddy:T:T:<html><body>still there?</html></body>

and this String was used to create a TOCServerPacket named currentPack, then

currentPack.isIncomingIM()

should produce true, while currentPack.isError() and currentPack.isBuddyUpdate() should
return false.

The remaining public methods you define in ths class, getBuddyName, getBuddyStatus, getErrorCode
and getMessage, should return Strings as results. As their names suggest, each of these methods should
extract one of the fields of a packet received from the AOL server. Thus, if currentPack is the packet
shown above, the invocation

CS 134 Spring 2007

3

currentPack.getBuddyName()

should produce the String “somebuddy” while the invocation

currentPack.getBuddyStatus()

should produce “T”.

The getMessage method should do a little more work than the other methods. It should return the actual
message included in an IM_IN2 packet. That is, it should return the String found after the fourth colon in
an IM_IN2 packet. It should, however, first remove all of the HTML from the message. That is, the loop to
remove HTML that you included in the last lab’s dataAvailable method should be moved to the getMes-
sage method’s definition (unless you choose to modify the rest of your program to handle displaying HTML
as described in the Extra Credit appendix). Assuming currentPack refers to the packet described above,
the invocation

currentPack.getMessage()

should return “still there?”.

The seven methods described above will be the only public methods defined in TOCServerPacket. You
could implement these methods by simply copying and revising segments of code you wrote last week. In-
stead, however, we want you to define two private methods described below and then use these methods to
simplify the definitions of the public methods.

In class, we have typically extracted substrings by first identifying the positions of both the beginning and
end of the desired text and then using a single substring operation. An alternative is to first use substring to
remove any unwanted characters from before the desired text and then to use another substring operation to
remove unwanted characters from after the desired text. With this in mind, consider defining two private
accessor methods named getPrefix and getSuffix.

The getPrefix method will be quite simple. It will take a String as a parameter and return all of the
characters in its parameter up to but not including the first colon. If there is no colon, it should return the
entire contents of its parameter value. For example:

getPrefix(“somebuddy:T:T:<html><body>still there?</html></body>”)

should return “somebuddy”.

The getSuffix method should take two parameters: a String and an int value specifying the number of
colon-separated “fields” to remove from the first parameter. It should return the suffix of its first parameter
that remains after removing all of the text up to the nth colon where n is the value of the second parameter.
For example:

 getSuffix(“IM_IN2:somebuddy:T:T:<html><body>still there?</html></body>”, 1)

should return “somebuddy:T:T:<html><body>still there?</html></body>”, while

 getSuffix(“IM_IN2:somebuddy:T:T:<html><body>still there?</html></body>”, 2)

should return “T:T:<html><body>still there?</html></body>”, and

 getSuffix(“IM_IN2:somebuddy:T:T:<html><body>still there?</html></body>”, 4)

should return “<html><body>still there?</html></body>”. The definition of this method will in-
clude a simple loop. Each of the public methods of the TOCServerPacket class can then be easily defined
using getSuffix and getPrefix.

CS 134 Spring 2007

4

Using HashMaps
To keep track of which ChatWindow goes with which conversation, you will use a class named HashMap.
The HashMap class is included within the standard java.util library. Therefore, to use this class you
will need to add the line

import java.util.*;

to the top of the file containing the definition of your IMControl class. Although you’ll use HashMaps to
track of ChatWindows, they will only be used in the IMControl class.

The HashMap class is like a dictionary. You can use it to “look up” the ChatWindow associated with a
buddy name. Of course, HashMap isn’t included in Java just for implementing IM clients. It can be used
to associate values of one type with values of any other type. The way you tell java what the key (e.g., word
or buddy name) and value (i.e., definition or window) types are is to write them in angle brackets when de-
claring the HashMap. Since you want to map buddy names (Strings) to ChatWindows, the declaration
looks like:

private HashMap<String, ChatWindow> windowList;

When creating a HashMap with new, you need to include those types again:

windowList = new HashMap<String, ChatWindow>();	

Once a HashMap is created, it is very easy to use. To add an item to the collection, you pass the name you
want to associate with the item and the item itself as arguments to the put method as in:

windowList.put(buddyName, newWindow);

You can later ask which window is associated with a given name by using the invocation

windowList.get(buddyName)

(If no window is associated with the name you provide as an argument to get, the value null will be re-
turned as its result.)

You will need to use the HashMap in two situations in your program. When your program receives a new
IM_IN2 packet in its dataAvailable method, you will use the get method to see if a ChatWindow
for that buddy already exists. If no window exists, you will create a new one, and add it to the HashMap
using the put method. You should then pass the message received to the ChatWindow’s messageRe-
ceived method so that it will display.

When the user presses the “Start Conversation” button, you should perform a similar lookup, creating a new
window only if none already exists for the user selected in the buddy menu. To avoid creating multiple win-
dows for a single buddy, use normalized screen names when you invoke put and get.

Getting Started
You should begin your work this week by making a new copy of your project folder from last week, renam-
ing it so that its name contains your name and “Lab5” (but no blanks). Open this project with Bluej. Then,
change the name of your main class from the last lab to “IMControl” by simply changing it in the class
header and the constructor and saving the file.

Implementation Plan
As usual, you should plan to add code to implement one feature at a time and to test each feature before mov-
ing on to the next step. The following gives a possible plan for such an approach.

CS 134 Spring 2007

5

Implementing the TOCServerPacket class (and modifying dataAvailable)
1. Begin implementing the constructor, the boolean-valued methods, and the private methods of the

TOCServerPacket class as outlined in the appendix “Working with Multiple Classes” below.

2. Add definitions of the four public, String-valued methods of the TOCServerPacket class: getBuddy-
Name, getBuddyStatus, getErrorCode and getMessage. Test each of these methods by creating an
appropriate TOCServerPacket just as you tested the other methods of this class while following the
instructions in the “Working with Multiple Classes” section.

3. Modify the code of your dataAvailable method to take advantage of your TOCServerPacket class:

a. As soon as you retrieve a String using the in.nextPacket method at the beginning of the dataA-
vailable method you should pass this String as a parameter in a TOCServerPacket construction
and associate the TOCServerPacket constructed with a local variable.

b. Replace the invocations of startsWith in the branches of the if statement that forms the body of
your dataAvailable methods with conditions that invoke the isIncomingIM, isBuddyUpdate,
and isError methods of your TOCServerPacket class.

c. Replace the code you wrote using indexOf and substring to extract the relevant fields of a mes-
sage received from the server with invocations of the getBuddyName, getBuddyStatus, getMes-
sage, and getErrorCode methods of the TOCServerPacket class.

d. Test your revised program to make sure everything still works as it did before.

Note: The revised program will provide no functionality beyond what your program provided last
week. The purpose of the process of defining and using TOCServerPacket was not to extend what
your program could do but instead to simply reorganize its code so that each individual method in-
cluded in your program would be shorter and simpler.

Implementing the ChatWindow class (and Modifying IMControl even more)
4. First, define a private method within the IMControl class that will take a screen name as a parameter

and return the normalized version of the name. You already wrote the code to do this last week. Placing
it in a private method will enable you to use the code repeatedly without actually repeating it.

5. Define a ChatWindow class with nothing but a constructor that expects no parameters. At this step, just
write the code to create the desired GUI interface. You should test this by running it as if it was an inde-
pendent program.

6. Next, add a textEntered method that simply displays anything typed into the text field at the bottom
of the ChatWindow in its text area.

7. Now add parameters to the constructor for the screen names of the sender and recipient of the messages
in the window. Modify the invocation of createWindow in the constructor so that the recipient’s name
will be displayed in the title bar (just pass the title as a third parameter to createWindow) and modify
textEntered so that it places the sender’s name before each message it displays. You should still be
able to test this as if it was a single class program. After you select “new ChatWindow(...)” from
BlueJ’s menu it will let you type in parameter values for it to use. Just type in two names in quotes.

8. Modify your IMControl class by removing the message text field and the “Send” button. Replace them
with a “Start Conversation” button. Add code to create a new ChatWindow when this button is pressed.
At this point, it won’t be possible to send messages using your program. You will fix that once you have
implemented the ability to manage multiple ChatWindows.

9. Add the code to keep track of the windows created by pressing the “Send” button. Create a HashMap for
ChatWindows in your IMControl constructor. Add code to try to get the window associated with the
screen name selected in your buddy menu each time “Start Converstation” is pressed. If a ChatWindow
is found in the HashMap, just make it visible. Otherwise, create a new window and add it to the Hash-
Map. Make sure to use normalized screen names.

CS 134 Spring 2007

6

10. Now, add a FLAPConnection parameter to the ChatWindow constructor. Associate the parameter
value with an instance variable, and add code to textEntered to actually send a message when the user
types one into the window’s text field. Test your program. It should now let you send messages through
individual ChatWindows (but will still display all messages received in the main window’s text area).

11. Add the definition of a messageReceived method to ChatWindow and modify the code in your da-
taAvailable method to redirect incoming IM_IN2 messages to the appropriate ChatWindow’s mes-
sageReceived method. To do this, you will have to extract the sender’s name from the IM_IN2 mes-
sage and try to get the associated ChatWindow from the HashMap. If no window already exists, you
should create a new one and add it to the HashMap. Make sure to normalize the screen name. Test your
code!

Clean Up
Make sure to take a final look through your code checking its correctness and style. Review the comments
you received on the work you submitted in previous weeks and make sure you address the issues raised.
Check over the style guide accessible through the course web page and make sure you have followed its
guidelines. Make sure you included your name and lab section in a comment in each class definition.

Grading
Completeness (14 pts) / Correctness (6 pts)

• GUI layout
• Creating window to start conversation
• Receive message into right window
• Normalize method
• ChatWindow class
• TOCServerPacket method definitions
• dataAvailable uses TOCPackets rather than

Strings

 Style (10 pts)
• Commenting
• Good variable names
• Good, consistent indentation
• Good use of blank lines
• Removing unused methods
• Uses public and private methods appro-

priately

Submission Instructions
Find the folder that BlueJ created for your project. Its name should be the one you picked for your project
(something like FloydLab5).

• Click on the Desktop, then go to the “Go” menu and “Connect to Server.”
• Type “cortland” in for the Server Address and click “Connect.”
• Select Guest, then click “Connect.”
• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.
• Log off of the computer before you leave.

You can submit your work up to 11 p.m. two days after your lab (11 p.m. Wednesday for those in the Mon-
day Lab, and 11 p.m. Thursday for those in the Tuesday Lab). If you submit and later discover that your
submission was flawed, you can submit again. The Mac will not let you submit again unless you change the
name of your folder slightly. Just add something to the folder name (like the word “revised”) and the re-
submission will work fine.

CS 134 Spring 2007

7

Appendix 1: Working with Multiple Classes

Since this is the first time you will define several distinct classes as part of a single program, we will lead
you through the initial steps in the definition of the TOCServerPacket class to show you how you can edit
and test the separate classes that make up a multi-class program independently.

When you are ready to create the TOCServerPacket class, click on BlueJ’s “New Class...” button, but do
not select GUIManager as the type of class as you have in the past. Instead, leave the type setting as
“Class”. BlueJ will respond by creating a class definition with a skeletal constructor and method definition.

Note that the text provided by BlueJ does not include any import directives. This particular class will not
use any of the features of Squint or Swing, so it is not necessary to add imports. In general, however, you
will have to add imports for any libraries on which the class you are defining depends.

Begin editing this class template by replacing the comments in the first few lines with comments that briefly
describe the function of the TOCServerPacket class and include your name. Next, replace the sample in-
stance variable declaration for “x” with a declaration for a String variable that will refer to the text of the
TOC packet represented by a particular object of this class. Update the comment that describes the variable
while you are at it.

Now, revise the definition of the TOCServerPacket constructor. The constructor in the template includes
no formal parameter declarations and sets the (now non-existent) instance variable x equal to 0. Your con-
structor should expect a String consisting of the contents of a TOC packet as a parameter and should associ-
ate the value of this parameter with the String instance variable we told you to define earlier.

Next, replace the definition of sampleMethod with a definition of isIncomingIM. This method’s defini-
tion should look like:

 public boolean isIncomingIM() {
 return your-instance-variable’s-name.startsWith("IM_IN2");
 }

with the italicized text replaced the the name you selected for the class’ instance variable.

Provide a similar definition for isBuddyUpdate. Compile your class, fixing any syntax errors reported
until it compiles correctly. Now, even though the code you have included is quite simple, let’s test that it
works correctly so that you can learn how to test a class like this before trying to use it as part of a larger
program.

First, create an instance of the class. The process will be similar to the way you have run programs in past
weeks. You will execute the code of your constructor by selecting the “new TOCServerPacket(...” item
from the menu that appears when you depress the “ctrl” key and mouse button while pointing at the tan rec-
tangle that represents the TOCServerPacket class in your program’s project window. When you have se-
lected this item previously, you simply clicked “OK” in the dialog box that appeared. This time, you will
have to actually fill in a field within the dialog box before you click “OK”.

Unlike the classes we have defined in past week’s, the con-
structor for the TOCServerPacket class is defined to ex-
pect a parameter. Therefore, when you ask BlueJ to con-
struct a TOCServerPacket it will display a dialog box like
the one shown on the right.

In the window that appears, however, the text field above the
“OK” button will be empty. BlueJ wants you to fill it in with
the String that should be provided as a parameter to the

CS 134 Spring 2007

8

TOCServerPacket constructor. Type in something that looks like the beginning of a TOC IM_IN2 packet
as we have shown in the image on the previous page. The packet does not have to be complete (typing in
“...” as shown will actually work), but it must be included in quotes. When you have filled in the parameter
value, click “OK”.

In past labs, when you have clicked “OK” in such a dialog box, your program’s window has appeared on the
screen. This is because in the constructors of those classes, your code has started with an invocation of cre-
ateWindow. The TOCServerPacket class does not invoke createWindow. As a result, after you click
“OK”, no new window will appear. Instead, all that will happen is that a little red rectangle that looks like:

will appear near the bottom left of your BlueJ project window.

Point the mouse at this icon and depress first the control key and then the mouse button. A menu will appear.
The menu should include items that look like “boolean isIncomingIM()” and “boolean isBuddyUp-
date()”. Select one of these items. BlueJ should display a new dialog box presenting the result of invoking
the method you selected. This box should contain the correct result, true or false. Click “OK”. Now,
follow the same procedure to select the menu item for the other method. The box displayed this time should
contain the opposite result. If both results were correct, you have tested your methods and you should move
on and define the third boolean-valued method required, isError. Once this method is defined, compile the
class and test the new method just as we had you test the other methods.

Some of the methods you will have to define in TOCServerPacket are just a bit harder to test because they
expect parameters. As an example, consider the getPrefix method. It takes a String as a parameter and
returns the characters in the string up to but not including the first colon. Begin by entering the code to de-
fine this method. It will require a bit more code than the boolean-valued methods you have already defined.
It must use indexOf to find the first colon and then use substring to return the text before this colon. As
you write the code for this method think about what it should do if there is no colon.

Ultimately, getPrefix should be a private method. We will not be able to test its behavior using BlueJ’s
menus, however, if it is defined this way initially. Therefore, define it as a public method now and then
change its definition to private after testing it as described below.

Once you think the method’s definition is complete, compile the class and fix any syntax errors. Now, to test
the method:

1. Begin to create an instance of the TOCServerPacket by selecting “new TOCServerPacket” from the
menu that appears when you control-press the mouse while pointing at the TOCServerPacket icon.

2. In the dialog box that appears, type some short String to serve as the sample packet. It doesn’t really
matter what you type since the getPrefix method will not use it.

3. After the red icon representing the new TOCServerPacket appears, control-press the mouse on its icon.
The menu that appears should contain an item that looks like “String getPrefix(String ...)”.
Select this item.

4. Just as BlueJ earlier provided a text field in which you could enter the parameter to be passed to the con-
structor, it now provides a field for the parameter to the getPrefix method. Fill this field with some
quoted String containing one or more colons and press “OK”. Check that the answer is correct. If not,
check your code and try again.

5. Be sure to check that your method behaves well on odd cases (a string containing no colon, a string con-
taining no characters at all, ...).

Now, continue in the same manner to define and test each of the other methods required in the TOCServer-
Packet class following the instructions in the implementation plan.

CS 134 Spring 2007

9

Appendix 2: Extra Credit Ideas
These optional tricks can increase the functionality of your program. Extra credit can’t take you above the
maximum score on the lab, but it can make up for small errors!

1. Make the text wrap:

The default behavior of the JTextArea is to display the line un-wrapped. If conversation is
the name of your JTextArea, change to wrapping with

conversation.setLineWrap(true);

2. Make the JTextArea resizable:

Change the layout manager for your ChatWindow to stretch the JTextArea to fill the window.
To do this, include the invocation

this.setLayout(new BorderLayout());

in your ChatWindow constructor before you add components to the content pane. Once you do
this, you will have to add a second parameter when you invoke the content pane’s add method to
specify where the component being added should be placed. There are 5 choices:
BorderLayout .NORTH , BorderLayout .SOUTH , BorderLayout .WEST ,
BorderLayout.EAST, and BorderLayout.CENTER. Only one item can be placed in each of
these five areas. The item in the center is stretched to fill any space not used by the other four re-
gions). So, placing your text area by

 contentPane.add(conversation, BorderLayout.CENTER);

would ensure that it would grow if you increased the window size.

3. Show bold and colored messages by replacing JTextArea with JEditorPane:

You have seen that the IM messages received from AOL are actually encoded using HTML. We
suggested that you should write code to remove this HTML. An alternative is to use a GUI compo-
nent that knows how to display HTML. The Java JEditorPane is such a component.

To use a JEditorPane you will need to:

• Use a BorderLayout as described above.
• Change the variable you used to refer to your JTextArea to a JEditorPane variable and con-

struct a JEditorPane instead of a JTextArea (the constructor expects no parameters).
• Assuming the variable’s name is conversation, include the invocations

conversation.setEditable(false);
conversation.setContentType(“text/html”);

in your constructor (the first one should really be there already).
• Revise your code to only remove <html>, <body>, </body> and </html> tags
• Use setText instead of append to place text in the JEditorPane. This means you will have

to keep a separate String variable of the entire conversation.
• Make sure that the argument to setText begins with <html><body>, ends with </html></
body>, and includes either
 or <p> tags between messages.

CS 134 Spring 2007

10

Appendix 3: Sharing Your Program
At the end of this assignment last semester, a number of students asked how they could send a copy of their
program to someone else so that the other person could run it without a copy of BlueJ or Squint. The follow-
ing instructions should provide a way to do this (although the other machine will probably have to have Java
5.0 installed).

1. Open your program in BlueJ so that its project window is displayed on the screen.
2. Open your “IMControl” class and add a new method of the form:

public static void main(String [] args) {
 new IMControl();
}

3. To verify that you added the new method correctly, recompile your program and then point at the IM-
Control icon in the project window, press the control key and the mouse button and select “ void main(
String [] args)” from the menu that appear. Click “OK” in the dialog box that appears. If everything is
fine, your program should begin to run.

4. Now, select “Create Jar File...” from the “Project” menu.
5. Select “IMControl” in the “Main Class” menu, then click “Continue”.
6. Use the “New Folder” button to create a new folder to hold the standalone version of your program.

Then, enter a name like “MyAIM.jar” (that ends in .jar) in the “File:” field for the file you will create and
click “Create”

7. Go to “http://www.cs.williams.edu/~cs134/s07/squint.html” in a web browser and download a copy of
“squintV2.6.jar” into the folder that contains the .jar file you created in the previous step

8. Go to the labs page for the course and download a copy of TOCtools.jar. Place this in the folder with
your other jar files.

9. Test that everything works by quitting BlueJ, and then finding the folder you created in step 7 and
double-clicking on the jar file for your program. The program should run.

10. Point at the finder icon for the folder you created in step 7, depress control and the mouse button and se-
lect the “Create Archive” item from the menu that appears. This will create a .zip file out of your folder.

11. Send the .zip file to anyone you want. With a bit of luck, if they unpack the .zip and then click on your
.jar file your program will run.

CS 134 Spring 2007

11

http://www.cs.williams.edu/~cs134/squint.html
http://www.cs.williams.edu/~cs134/squint.html

