
Lab 10: Webmail
Due: 11PM, April 24/25

Chances are, most of you are familiar with the window shown below.  It  is a sample of the interface pro-
vided to users logging in to access their mail using the Williams College webmail service.

After completing this login page correctly, a user is presented with a screen like the one shown below 
through which the user can read or send email messages.

Despite the fact  that  these windows are very familiar to you, if you think about their contents in the con-
text of this course, you should realize there is something odd going on.  You have learned how the Inter-
net’s email system works.  Email client programs provide access to email by using email protocols like 

CS 134 Spring 2007

1



POP, IMAP, and SMTP to communicate with email servers.  On the other hand, web client  programs (i.e., 
browsers) provide access to web pages by using the HTTP protocol to communicate with web servers.  
How can you read your mail using a web client that  depends on HTTP when mail access requires the use 
of POP or IMAP?

HTTP is a protocol that  provides rules by which a client  can request that  a server send it some data in 
HTML format.  Often, an HTTP server responds to the requests it  receives by simply sending back the 
contents of files of HTML stored on the server, but  this does not  have to be the case.  The server can in-
stead contact other servers using other protocols to collect  the desired information, encode the informa-
tion collected in HTML and then send this HTML back to the client.  In fact, this is exactly how a web-
based mail server like the one provided by OIT is implemented.

The diagram on the right sug-
gests how this works.  First, 
based on which link or button 
a user clicks, the web browser 
sends an HTML “GET” 
request  to the HTTP server 
program designed to pro-
vide mail access.  

The URL sent in this re-
quest will include information that iden-
tifies the message(s) the user wants to 
see.  When it receives this request, the 
HTTP server in turn sends one or more 
requests to the user’s POP and/or SMTP 
server.  The POP or SMTP servers send the responses to 
these requests back to the HTTP server.  The HTTP server 
then constructs the HTML to describe a web page that will 
display the requested information and sends it back to the 
web browser to be displayed.

For this assignment, we would like you to implement  an HTTP server that functions in this way.  Like the 
very first  Java programs you wrote for this course, your HTTP server will only provide half of the func-
tionality expected of a mail server.  It  will enable users to view their mail messages, but  not  to send mail.  
That is, it will provide access to a POP server, but not to an SMTP server.

We will refer to the program we want  you to write as WIMP (Williams Internet  Mail Processor) in honor 
of the program that  OIT actually uses to provide webmail service.  That program is named IMP.  If you 
hunt  around using Google a bit, you will discover that a) IMP is widely used by many institutions beyond 
Williams, and that  b) the creator of IMP is a former Williams CS major, Chuck Hagenbuch ’00, who de-
veloped the first version of the program while still at Williams.

The WIMP HTTP Interface
Your webmail server should respond to HTTP requests of two forms.  When users first connects to your 
server,  they will enter a URL of the form:

http://your.machine.net:8080/wimp

Your program will then receive an HTTP request of the form

GET /wimp HTTP/1.1

CS 134 Spring 2007

2

POP
server

RETR
 23

GET /wimp?num=23...

<htm
l><he

ad
>...

+OK ...

Web
browser

Web Server

http://your.machine.net:8080/wimp
http://your.machine.net:8080/wimp


Your program should 
respond to such requests 
by sending back the 
HTML for the page 
shown on the right.

The bottom portion of 
the window will display 
the text  of a single email 
message.  When a user 
first  connects, the last 
message received on the 
account should be dis-
played.  Above the con-
tents of the message 
there will be a menu 
containing descriptions 
of all the messages 
within the user’s ac-
count. 

Selecting one of these menu items as shown below and then pressing the “Get Message” button next  to 
the menu will cause the browser to send a request of the form

GET /wimp?num=nn HTTP/1.1

to your server 
where “nn” is 
replaced by the 
number of the 
menu item that 
was selected 
when the button 
was clicked.  
This will cause 
your program to 
send HTML de-
scribing a page 
including both 
the menu of all 
of the user’s 
message and the 
contents of the 
requested mes-
sage as shown on 
the next page.

CS 134 Spring 2007

3



The menu displayed in the page should be pre-scrolled so that  the item selected in the menu is the item 
describing the message displayed within the window.  The user should then be able to display additional 
messages by first selecting the desired message from the menu and then pressing the “Get  Message” but-
ton.

If your server receives a request  that  does not  start  with “/wimp” it  should respond by sending the client 
HTML that will display a web page reporting an error.

The WIMP GUI Interface
The most interesting aspects of your pro-
gram for this week will be the way in 
which it  responds to incoming HTTP re-
quests.  It  will, however, also provide a 
very simple GUI interface to enable you to 
monitor its behavior and to control which 
POP server and account it uses when re-
sponding to HTTP requests.  A sample of 
what this GUI interface might  look like is 
shown on the right.

Across the top of the program’s window 
there are JTextFields and a JPass-
wordField that are used to describe the 
POP account  that should be used to fetch 
mail for the user and a JButton used to start  the server.  Your program will not  respond to incoming 
HTTP requests when it is first run.  Instead, after running the program, you will have to fill in the fields 
describing the mail account that should be used and then press the “Start  Server” button.  At this point, 
your program will create a TCPPort listening for connections on some relatively large port number (8080 
is my favorite).  It will then be ready to respond to HTTP requests.

CS 134 Spring 2007

4



Below the text fields and button is a JTextArea which you can use to log information about  what your 
program is doing.  In the version of the program used to create the window above, we displayed a line 
each time a connection was established and each time an HTTP request  was received.1  You can display 
this information or any other information you find useful when debugging your code.

As this interface suggests, your program is intended to function as a very personal web mail server.  Un-
like the IMP server run by OIT, it will not  provide mail access to multiple users.  While it is running it 
will only provide access to the account whose information was provided through the GUI interface.  This 
is not realistic.  In particular, it is not secure.  While your program is running anyone clever enough to 
guess the name of the computer use are using and the magic URL “wimp” will be able to access your mail 
without  knowing your account id or password.  We decided not to ask you to implement  an HTTP inter-
face that would provide security and/or support multiple users to keep the lab as simple as possible. 

Taking Advantage of Your Earlier Work
The menus displayed in the web pages shown before should look very familiar.  They look just  like the 
JComboBoxes shown in the description of Lab 6.  In fact, the functionality provided through this program 
is very similar to what  we asked you to provide in Lab 6.  The only difference is that in this week’s lab, 
you are supposed to write a specialized web server (rather than a mail client) and users are supposed to 
access this functionality through a web browser (rather than through a client you wrote).

As a result, it  should not come as a surprise that you will be able to reuse some of the code you write for 
Lab 6 to help you complete this lab.  In fact, it should be possible for you to use copies of the POPCon-
nection, MessageList, MailMessage, and StringList classes you completed six weeks ago as the 
basis for this week’s lab.  If you do this, you will be half done before you even start!

If it helps, you may modify these classes, but this should not be necessary.  In our sample solution to this 
lab exercise, we used unmodified version of the four mail classes from our sample solution to Lab 6.

Basically, when your web server receives a “GET /wimp” request, it should create a new POPConnec-
tion.  It  should then invoke the POPConnection’s login method using the account information entered 
in the GUI components in the program’s window.  If the login succeeds, it  should associate this POPCon-
nection with an instance variable so that it can use it later to respond to subsequent “GET 
/wimp?num=nn” requests.  Then, it  should build a String containing the HTML to describe a web page 
like those shown above containing a menu of message summaries and the text  of the last message stored 
in the account.

You will build this page by using the POPConnection’s messagesAvailable and getMessage meth-
ods together with the shortSummary method of the MailMessage to fetch all of the messages stored in 
the account and build a array of lines summarizing the messages.  This array will then be used to con-
struct the HTML for the web page as described below.  Once this is done, you can assume that the POP-
Connection has cached copies of all of the messages stored in the account in its MessageList.  There-
fore, you can close the POPConnection so that your POP account does not  remain locked while you ex-
amine messages in your web browser.

If the login fails, your code to handle a “GET /wimp” request should set  the POPConnection instance 
variable to null, and send HTML back to the client  to display an error message in the web page that looks 
something like the window shown below.  

CS 134 Spring 2007

5

1 Note that from our log you can see that web browsers sometimes send requests you were not expecting.  Every 
time our browser requests a page it also requests a “favicon” image (favorite icon) to display in the address window.  
This means it is important that your server responds correctly when it receives requests other than those starting with 
“/wimp” by returning an error page.



When your server receives a “GET /wimp?num=nn” request, it will first check to make sure that the 
POPConnection instance variable is not null.  If it is null, you should respond by sending the HTML 
for an appropriate error page to the server.  If it is not null, then it can assume that the POPConnection 
holds cached copies of all of the mail messages in the account.  Therefore, even though the account is no 
longer logged in, you can continue to use the getMessage method to access these messages to build the 
HTML that should be sent back to the client.

Some HTML Basics
We don’t want you to have to spend too much time learning HTML to complete this assignment.  With 
this in mind we have designed the layout for the web pages your program needs to complete so that  they 
can be constructed with only minimal knowledge of HTML.  In addition, we will provide several classes 
in the starter folder that will help you produce the HTML you need to send back to the client.

We have already discussed some of the basics of HTML in class.  HTML provides a way to “mark up” 
plain text to indicate how it  should be displayed to a user.  HTML provides mark up “tags” to indicate that 
certain sections of text should be displayed in bold font, centered on the page, displayed as a separate 
paragraph from surrounding text, etc.  Each HTML tag consists of a tag name surrounded by the “angle 
brackets” < and >.  For example the tag <p> is used to indicate the beginning of a new paragraph.  Fre-
quently a pair of tags is placed before and after a section of text that  is to be displayed in some special 
way.  In this case, the name of the second tag is formed by placing a “/” before the name of the first tag in 
the pair.  For example, to make the phrase “Big words” appear in bold face, you would write

<b>Big words</b>

There are several HTML tags that  appear in the specification of almost  every web page that do little more 
than say “This is a web page.”  The first of the classes we will provide is designed to make it  trivial to 
place the text  you actually want to display at the appropriate point within these standard tags.  This class 
is named WebPage.  Its constructor requires no parameters.  The class provides a method named to-
String.  This method returns a String containing the complete HTML to describe an empty web page.  
For example, if you first create a WebPage object by saying

WebPage blank = new WebPage( );

and then send the text that describes the page through a NetConnection to a web browser by executing 
an invocation like

toClient.out.println( blank.toString() );

then the web page shown below will appear in the client’s browser window.

CS 134 Spring 2007

6



Not very exciting!  But, think for a moment what would happen if you simply created a new GUIMan-
ager.  It would display an empty window, much like the empty web page.  It isn’t very exciting to create 
a new GUIManager, but as you have seen throughout this semester, GUIManager is an important class 
because you can extend it to describe programs with interesting GUI interfaces.  Similarly, the WebPage 
class is defined to enable you to extend it to describe interesting web pages.

In fact, GUIManager and WebPage are actually quite similar.  If you define a class that extends Web-
Page, you can add various items to the WebPage much as you add GUI components to the content-
Pane of a GUIManager.  Then, when you invoke the toString method of the class, it will produce the 
HTML to describe a web page containing the items you added.

To make this concrete, consider the error page shown earlier.  In the starter folder, we have included a 
class named ErrorPage that extends WebPage and is designed to make it quite easy to generate the 
HTML for such an error page.  In particular, if you create an ErrorPage by saying:

ErrorPage logErr = new ErrorPage( "Unable to log in to POP account" );

and then execute the command

toClient.out.println( logErr.toString() ) ;

the error page shown earlier will be displayed in the client’s browser.

The complete code for the ErrorPage class is shown below:

public class ErrorPage extends WebPage {
    public ErrorPage( String message ) {
        this.setTitle("Error");
        
        contentPane.add( new WebLabel(message) );
    }
}

It  uses the two key features of the WebPage class.  First, the WebPage class contains a method named 
setTitle.  You can use this method to specify a String that  should be displayed in the web browser 
window’s title bar.

More importantly, like the GUIManager class, the WebPage class provides a variable named content-
Pane.  You can add items to the page you are trying to build using the method add.  The ErrorPage 
class uses this method to add the message passed to its constructor to the page.  Recall that we could not 

CS 134 Spring 2007

7



just  add Strings that  we wanted displayed in a GUIManager to the contentPane.  Instead, we had to 
construct a JLabel to hold the String.  Similarly, to add a String to a web page, we construct a WebLa-
bel from the String.

The toString method of any class that  extends WebPage returns a String containing the HTML for 
the desired page.  For example, the HTML sent to the client by executing the commands

ErrorPage logErr = new ErrorPage( "Unable to log in to POP account" );
toClient.out.println( logErr.toString() ) ;

would be

<html><title>Error</title>
<body>
<h3> Unable to log in to POP account </h3>
</body></html>

Most  of this HTML is a collection of fairly standard HTML tags that  say little more than “I am a web 
page.”  The only parts that  are specific to this page are the text “Error” in the first line that determines 
what is displayed in the web browser window’s title bar and the third line that  describes the actual con-
tents of the page.  This third line is actually produced by the WebLabel class.

The WebLabel class is also very simple.  HTML includes a set of tags for indicating that  a piece of text 
should be displayed as a “header”.  The tags used for this are h1, h2, h3, ..., h7.  The smaller the number, 
the bigger the header.  Thus, the HTML

<h3> Unable to log in to POP account </h3>

Says that “ Unable to log in to POP account” should be displayed as a moderately large header.  

Given this tidbit  about HTML, the structure of the WebLabel class is quite simple.  Its code is shown be-
low.

public class WebLabel extends WebComponent {
    private String label;

    public WebLabel(String label) {
        this.label = label;    
    }
    
    public void setText( String label ) {
        this.label = label;
    }
    
    public String toString() {
        return "<h3>" + label + "</h3>";   
    }
}

CS 134 Spring 2007

8



Just as the WebPage class has a toString method that returns the HTML to describe an entire web page, 
the WebLabel class includes the definition of a toString method that  returns the HTML that  describes 
the part  of the web page it  is expected to create.  It simply put  “<h3>” and “</h3>” tags around the text 
to be displayed.  This text can either be provided as a parameter to the WebLabel constructor or set using 
a setText method.

Note that  the WebLabel class extends a class named WebComponent.  Just  as the contentPane.add 
method of a GUIManager will allow you to add any GUI component to a program’s window, the 
contentPane.add method of a WebPage will let  you add any WebComponent to the page.  Therefore, 
one can define other classes like WebLabel by extending WebComponent.

In fact, that is just what  we have done.  In the starter proeject  for this lab, we have included a number of 
classes you can use to generate the web pages your server should return.  These classes are described be-
low.  The bad news is that we have not provided all the classes you will need.  In particular, as part of this 
lab, we want you to write one class that extends WebPage and one that extends WebComponent.

We provide you with the following classes:

WebTextArea
Normally, a browser is free to reformat the text  it  receives so that  each line of text  nicely fills the screen.  
In doing so, it  may eliminate blank lines and spaces that appeared in the original HTML.  For example, if 
you sent the HTML

<html>
  <head> <title> Welcome Mat </title> </head>
  <body bgcolor=#FFFFFF>
      Welcome  to 
              my 
        home page  
   </body>
</html>

The web page displayed would look like:

even though the words “Welcome to” appeared on a separate line from the words “my” and “home page” 
within the HTML.

The <pre> tag overrides this behavior.  The <pre> tag tells the browser that all of the text until the fol-
lowing </pre> tag has been “pre-formatted” and that the number of spaces and new-lines should not be 
changed.  Therefore, if you send the following HTML to a browser:

<html>
  <head> <title> Welcome Mat </title> </head>

CS 134 Spring 2007

9



  <body bgcolor=#FFFFFF>
     <pre>
      Welcome  to 
              my 
        home page  
      </pre>
   </body>
</html>

the resulting page will look like:

The WebTextArea class is used to describe a section of a web page that will display such pre-formatted 
text.  In particular, you will use the WebTextArea class to describe the part  of your web pages that dis-
plays the requested email message.

You can set the text  to be displayed by a WebTextArea in two ways.  You can either provide the text as a 
String parameter in a WebTextArea constructor or as a parameter to an invocation of the setText 
method.  For example, if message was a String variable holding an email message, you could display 
this message in a WebPage by executing code like:

WebTextArea display = new WebTextArea();
display.setText( message );
contentPane.add( display );
 

Actually, WebTextArea does a bit more than place text between <pre> and </pre> tags.  If there are 
any <’s or >’s in the text displayed by a WebTextPage, they have to be treated specially or they might 
confuse the browser into thinking they were parts of HTML tags themselves.  Therefore, the WebTex-
tArea class replaces all <’s with the sequence “&lt;”, all >’s with the sequence “&gt;”, and all &’s with 
the sequence “&amp;”.  These strange sequences are a standard part of the HTML language known as 
entities.

WebButton
We provide a class named WebButton that  produces HTML to describe buttons like the “Get Message” 
button that should be included in the pages your server generates.  Like the other classes described above, 
you can provide the label for the button either as a parameter to the constructor or using a setText 
method.  For example, the construction

new WebButton( “Get Message” )

could be used to construct the button you should display.

CS 134 Spring 2007

10



WebForm
When you click on a button in a web page, the web browser in which the page is displayed has to gather 
together information from various parts of the page and send it  to the server as an HTTP request.  For ex-
ample, when a user clicks on your “Get  Message” button, we want the browser to determine the number 
of the item currently selected in your menu of message summaries and include that number in an HTTP 
request  of the form “GET /wimp?num=nn”.  This means that  the components of this HTTP  request, in-
cluding the use of the identifiers “wimp” and “num” have to somehow be specified within the HTML your 
server sends to describe the page.

Your page will contain only two components that  will be involved in this process, the menu and the but-
ton.  You have certainly seen pages with multiple buttons and many, many menus and text fields in which 
users can enter information.  HTML has to provide a way to include tags that  indicate which components 
should be grouped with which buttons when determining what information to include in the HTTP request 
generated when a button is pressed.  The WebForm class provides a means through which you can easily 
generate such HTML tags.

A WebForm is used quite a bit like a JPanel is used when constructing a GUI interface.  It  is a WebCom-
ponent, so it can be added to the contentPane of a WebPage.  At  the same time, it  has its own add 
method through which you can add WebComponents to a WebForm.  You can add any WebComponent 
you want  to a form, but  typically they will include at  least  one WebButton and things like menus through 
which users can enter additional information.

When you create a WebForm, you must  include the WebForm’s name as a String parameter to the con-
structor.  The WebForm class includes this name in the HTML it  produces in such a way that the name 
will be included in an HTTP generated by the browser when any WebButton included within the Web-
Form is clicked.  Thus, when creating the HTML for a page that  displays an email message, your program 
will create a WebForm using an instruction like

WebForm menuForm = new WebForm( “/wimp” );

Then, it will add the menu to this form and also add the button using an instruction like:

menuForm.add( new WebButton( “Get Message” ) );

Finally, it can add the completed form to the web page by saying

contentPage.add( menuForm );

The HTML produced when the toString method of a WebForm is invoked is actually quite simple.  It 
begins with a tag of the form:

<form action="/wimp">

This will be followed with the tags to describe all of the component added to the form.  Finally, the tag 
“</form>” will be placed at the end.

WebPane
The final class we include in the starter project  is named WebPane.  Like a JPanel, a WebPane is a gen-
eral purpose container for holding components.  You will not directly use this class in your program, but 
our definitions of the WebPage and WebForm classes both depend on WebPane.

CS 134 Spring 2007

11



WebComboBox
To complete this program, you will need to define one additional WebComponent to create the HTML for 
the menu displayed by your program.  To help you understand what  this class must do, a sample of the 
HTML for a shortened version of the menu shown in the example above is displayed below:

<select name="num">

<option value=1> Wed, 20 Apr 2005 | Tom Murtagh <tom@cs.willi | test message 1  </option>

<option value=2> Wed, 20 Apr 2005 | Tom Murtagh <tom@cs.willi | test message 2  </option>

<option value=3> Wed, 20 Apr 2005 | Shannon Murtagh <shannon. | Subject:        </option>

<option value=4> Thu, 21 Apr 2005 | Lorraine Robinson <lrobin | Graphics Hour   </option>

<option value=5 SELECTED> Thu, 21 Apr 2005 | Jim Teresco  | NEED YOUR HELP!     </option>

<option value=6> Thu, 21 Apr 2005 | Barbara Lerner <lerner@cs | Joke            </option>

<option value=7> Fri,  9 Sep 2005 | tom@cortland.cs.williams. |                 </option>

<option value=8> Tue, 13 Sep 2005 | tom@cortland.cs.williams. |                 </option>

<option value=9> Tue, 13 Sep 2005 | tom@cortland.cs.williams. |                 </option>

</select>

The HTML begins with the tag

<select name="num">

and ends with a “</select>”.   In between there is a list of items of the form:

<option value=nn> ... menu item text ...   </option>

describing individual menu items.  One of these items may include the word “selected” in the opening 
<option ...> tag.  This item will then be displayed as the initially selected item in the menu.

The specification name=”num” in the <select ...> tag determines how the item selected in the menu 
when the form’s button is clicked will be included in the HTTP request  generated.  Whatever string ap-
pears after “name=” will be paired with the number of the menu item selected.  For example, if we re-
placed the <select ...> tag shown above with

<select name=”menuItem”>

then an HTTP request sent when the button was pressed might look like

GET /wimp?menuItem=8 HTTP/1.1

The constructor of the WebComboBox class you define should take at least one parameter.  This parameter 
will be a String that should be included as the name of the menu in its <select ...> tag.  You may 
want to also define the constructor so that  it  accepts an array of Strings as a second parameter.  Each of 
the Strings in the array should then be included as an item in the menu.  You should decide whether to 
define a constructor with one or two parameters by choosing the approach that  will make it  easiest for you 
to create and update the web pages your program must generate.

Similarly, the class may choose to provide either two or three public methods.  There should definitely be 
a toString method.  This is where you will actually do the work of generating the HTML.  There should 
also definitely be a method named setSelectedItem that takes an integer value as a parameter and de-
termine which menu item will be marked as “selected” in its <option ...> tag.  You may also want 
to define a setItems method which takes a new array of Strings that should appear as the items in the 
menu.

CS 134 Spring 2007

12

mailto:tom@cs.willi
mailto:tom@cs.willi
mailto:tom@cs.willi
mailto:tom@cs.willi
mailto:tom@cortland.cs.williams
mailto:tom@cortland.cs.williams
mailto:tom@cortland.cs.williams
mailto:tom@cortland.cs.williams
mailto:tom@cortland.cs.williams
mailto:tom@cortland.cs.williams


MessagesPage
The second HTML related class you should define is named MessagesPage.  It should extend the Web-
Page class.  It should add four WebComponents to it content  pane:  two WebLabels, a WebForm to hold 
the message menu and “Get Message” button, and a WebTextArea to display the requested email mes-
sage.  The constructor of your MessagesPage class should take an array of message summary Strings 
as a parameter.  The class should include a setMessage method that  takes two parameters: the number of 
the message to be displayed and an EmailMessage containing the text  of that message.  You will not 
define a toString method in this class.  Instead, it  will inherit  toString from the WebPage class.  This 
inherited method will return the HTML for all of the components you add to the contentPane within your 
code.

Dealing with HTTP
Your program’s main class will extend GUIManager as usual.  Its constructor will create the GUI inter-
face through which the user will enter POP account  information.  It  will include a buttonClicked 
method that creates a TCPPort (and disables the “Start” button).  Finally, it will have a connectionEs-
tablished method that handles individual HTTP requests.

Within the connectionEstablished method you will have to use String methods to dissect  the 
HTTP requests received and construct and send the HTML for web pages in response.  Remember to use 
private methods within your main class to keep this code well structured if it  begins to get at  all com-
plicated.

Getting Started
Download the starter file Lab10Starter.zip from the course website 
http://www.cs.williams.edu/~cs134/s07/labs and unpack it in your Documents folder.  Re-
name the folder that is created so that it contains your name and “Lab10”.  Open the project with BlueJ.

We also want you to import all of your classes (except POPClient) from Lab 6.   Under the BlueJ “Edit” 
menu there is an option to “Add Class From File.”  Selecting this option brings up a file chooser.  If you 
double click on your Lab 6 folder within this file chooser, you’ll find a list of project files.  Among these 
files are .java files corresponding to your classes.  If you hold down the command key (this is the key 
with the clover or open apple on it) you can select multiple .java files at the same time.  Select all the 
.java files except the POPClient.java file.  Then click “Add.”

Debugging Tips
Don’t forget  to close the NetConnection your server accepts from each client  after you finish sending the 
HTML describing the web page the client  should display.  If not, the client will wait  patiently to see if you 
are going to send it  more HTML before displaying anything.  The web browser will appear to be loading 
the next page for a very long time.

If the browser doesn’t display the page quite the way you wanted it to look, it might  help to be able to 
look at the HTML that  was actually sent  rather than just  the result produced when the browser tried to 
interpret that  HTML.  Most browsers provide a “View Source” option.  For example, there is a “View 
Source” menu item in the Safari “View” menu.  Selecting this item will pop up a new window displaying 
the text of the HTML the browser received from your server.

Submission instructions
As usual, make sure you include your name and lab section in a comment in each class definition.  Find 
the folder for your project.  Its names should be something like FloydLab10.

• Click on the Desktop, then go to the “Go” menu and “Connect to Server.” 
• Type “cortland” in for the Server Address and click “Connect.” 
• Select Guest, then click “Connect.” 

CS 134 Spring 2007

13

http://www.cs.williams.edu/~cs134/s07/labs
http://www.cs.williams.edu/~cs134/s07/labs


• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.

You can submit your work up to 11 p.m.  two days after your lab (11 p.m.  Wednesday for those in the 
Monday Lab, and 11 p.m.  Thursday for those in the Tuesday Lab).  If you submit and later discover that 
your submission was flawed, you can submit  again.  The Mac will not let  you submit  again unless you 
change the name of  your folder slightly.  Just  add something to the folder name (like the word “revised”) 
and the re-submission will work fine.  

APPENDIX:  Review of TCPPort Features

• You can create a TCPPort using a construction of the form

 new TCPPort( portNum )

where portNum is the number you want associated with your program’s port.

• An invocation of the form

somePort.addConnectionListener( this );

can be used to request that  the TCPPort notify your program whenever a new connection is requested by 
a client.  When a connection is made, the TCPPort will execute any code you place in a method defined 
with a heading of the form

 public void connectionEstablished( TCPPort whichPort ) {

• An invocation of the form

 somePort.acceptNetConnection( )

will cause your program to wait until a client  requests a connection.  The invocation will then return a 
NetConnection between your program and the new client.

CS 134 Spring 2007

14


