
Using BlueJ’s Debugging Tools: Part I

The BlueJ environment provides tools to help you identify errors that occur in your program. Knowing
how to use these tools can make it much easier to understand and correct a programming mistake. For the
first part of this lab, we would like you to become familiar with BlueJ’s debugger by completing the fol-
lowing tutorial which simulates the debugging of a Java program.

The program we will work with is a not quite correct version of the POP client we had you construct in
lab last week. A complete listing of the code for this program is attached to this handout. A sample of
the interface that should be provided by the program you will be debugging is shown below.

At the top of the window, the program displays text fields in which the user should enter an account iden-
tifier and a password to log in. There is also a field in which the user can enter a message number to re-
trieve. When the user presses the “Get Message” button, the program logs in to cortland using the ac-
count message provided and displays the requested message in its window.

To download a copy of this program into your own account:

• Launch Safari (you can use another browser if you prefer, but the download instructions below are
specific to Safari) and go to the “Lab Schedule and Handouts” page of the CS 134 web site.

• Find the link that indicates it can be used to download the IncompleteLab2 program.

• Point at the link. Hold down the control key and depress the mouse button to make a menu appear.

• While still holding the control key and the mouse button, depress the option key. The item that had
said “Download Linked File” should now read “Download Linked File As ...” Select this item.

CS 134 Spring 2007

1

• Using the dialog box that appears, navigate to your “Documents” folder and save the
IncompleteLab2.zip file in that folder. (You may want to click on the arrow to the right of the
“Save As:” text field to make the navigating process easier.)

• Return to the Finder, locate the IncompleteLab2.zip file in your Documents folder, and
double-click on it to create a IncompleteLab2 folder.

• Launch BlueJ. By default, BlueJ will open the project you created for last week’s lab. DO NOT
close this project quite yet.

• Using the “Open Project” item in the “File” menu, open the IncompleteLab2 project. Once
you have done this, close your project from last week’s lab.

Don’t Hurry!
Before any program you write in Java can be run, it must first be translated into a simpler language called
Java Virtual Machine code. BlueJ performs this translation when you press the “Compile” button. By
default, BlueJ tries its best to perform this translation in a way that will maximize the speed with which
the computer can perform the steps in your code. This process is call optimization. As part of optimiza-
tion, BlueJ may do things like reorder some of the steps you specified if it determines that such a re-
ordering will speed up execution without changing the perceived behavior of your program. Unfortu-
nately, the “perceived behavior” BlueJ avoids changing is the behavior observed by someone running
your program, not the behavior observed by someone using debugging tools to examine the step-by-step
execution of the code. As a result, to use the debugger effectively, we must start by telling BlueJ not to
attempt to optimize the code it produces.

To do this:

• Select “Preferences...” from the “BlueJ” menu.

• Click on the “Miscellaneous” tag.

• Under “Compiler and runtime settings” make sure that “Use optimization” is not clicked.

• Click “OK” as often as necessary (twice?), and then quit and restart BlueJ.

Seeing Red
Many of you have probably already made some sort of mistake while programming that made BlueJ pop
up a window full of indecipherable messages displayed in a frightening shade of red. One of your main
goals during this tutorial will be to learn a bit about how to interpret these messages, which are known as
run-time error messages.

To produce a sample of one of these messages:

• Run the “SimplePopClient” program in the project we had you download (i.e., select “new
SimplePopClient()”).

• Enter your account identifier, password and a small message number.

• Click “Get Message”.

That should be enough to get a window full of red ink. (If you don’t see such a window, it might be hid-
ing under your program’s window. Move some windows around to see if you can find it.)

The window that appears may initially look like the image shown below. The window is divided into two
sections with the red stuff that we are interested in hidden in the smaller section on the bottom.

CS 134 Spring 2007

2

If this is the case, then grab the dot in the middle of the bar between the upper and lower sections and
drag the boundary upwards so that the bottom area fills most of the screen. You may also want to stretch
the whole window a bit to make it wider. Then use the scroll bar on the bottom right to scroll to the top of
the red messages so that your window finally looks like:

Interpreting BlueJ Error Messages
The most important line in the red text that BlueJ has displayed is the first line shown:

Exception in thread "AWT-EventQueue-0" java.lang.IllegalArgumentException:
 Unable to establish connection to unknown host "cortland.williams.edu"

The first line tells you that a run-time error has occurred. Java calls such errors exceptions. Most of the
first half of the line is a typical bit of Java gibberish, but the second half of the line is actually quite in-
formative. It tells us exactly what when wrong. The program was unable to establish a network connec-
tion to the maclhine "cortland.williams.edu". This is not surprising since there is no such ma-

CS 134 Spring 2007

3

chine. The machine the program is supposed to connect to is "cortland.cs.williams.edu". The
programmer apparently left out the “cs” while typing in the name of the server.

This program is short enough that we could easily find the place where the server’s name was misspelled
and correct it. In larger programs, however, this might not be so easy. As a result, Java’s red error mes-
sages contain additional information to help us identify the precise line where the error occurred. Some-
times, however, you have to work a bit to find this information.

Take a look at the next few lines that Java displayed when the error occured. They should look something
like:

at squint.TCPSocket.makeSocket(TCPSocket.java:122)
at squint.TCPSocket.<init>(TCPSocket.java:96)
at squint.NetConnection.<init>(NetConnection.java:47)
at SimplePopClient.buttonClicked(SimplePopClient.java:82)
at squint.SimpleEventListener.actionPerformed(GUIManager.java:1245)

The first few of these lines should seem pretty useless. You have never even heard of most of the words
that appear in these lines including TCPSocket and makeSocket. You should notice, however, that the
punctuation included suggests that TCPSocket.makeSocket(...) might be some sort of method
invocation. In the third line, you can at least find a familiar name, NetConnection. Finally, in the
fourth line you see two names that are actually defined within the program you are trying to debug,
SimplePopClient and buttonClicked.

This collection of lines traces the major steps the program was trying to perform when the error occurred.
The fourth line says that the program was executing the instruction at line 82 within the definition of the
SimplePopClient class. Furthermore, it tells you that that line was part of the buttonClicked
method defined within that class. (Since any slight change to the program is likely to change the
numbering of its lines, the number displayed on your screen may not be exactly 82. If so, just note the
number that does appear and use it in place of 82 in the instructions that follow.)

Now that you know that the error occurred in the buttonClicked method on line 82 (or very nearby):

• Return to the the project window and double click on the icon for SimplePopClient to display
the source code for the class.

• Select “Go to line...” from the “Tools” menu.

• Enter the line number that appeared in the buttonClicked line of the error message in the dialog
box and click “OK”.

• BlueJ will now indicate which line in the program was the immediate source of the error by placing
a red cursor at the left end of the line. The indicated line should appear near the beginning of the
buttonClicked method.

If you find using “Go to line...” a little clumsy, there is a way to tell BlueJ that you would like it to always
display line numbers next to the lines of your program. To do this:

• Select “Preferences” from the “BlueJ” menu.

• Click on the “Editor” tab.

• Click to check the box next to the “Display line numbers” option.

CS 134 Spring 2007

4

• Click “OK”.

In the remainder of this handout, when we show images of a BlueJ program editing window, they will
include such line numbers at the left edge of the window.

Once you get to the right line, you should discover that it contains the construction of a NetConnection
and that the machine name specified is indeed missing the “cs”. Correct the machine name.

Before trying to run the corrected program, take another look at the lines BlueJ displayed after the first
line of its error message:

at squint.TCPSocket.makeSocket(TCPSocket.java:122)
at squint.TCPSocket.<init>(TCPSocket.java:96)
at squint.NetConnection.<init>(NetConnection.java:47)
at SimplePopClient.buttonClicked(SimplePopClient.java:82)
at squint.SimpleEventListener.actionPerformed(GUIManager.java:1245)

We now know that the fourth line describes the instruction our program was executing when the error oc-
cured, a line that constructs a new NetConnection. To construct a NetConnection, Java executes
code provided within the Squint library. The third line tells us that the 47th line of the code within the
library that describes how to <init>ialize a NetConnection was being executed when the error oc-
cured. Just as your code depends on code in the library, the instructions that initialize a NetConnection
depend on other code provided within the library. In particular, the second line above indicates that as
part of initializing the NetConnection, the code to initialize something called a TCPSocket was used.

Basically, when you construct an object defined within any of the Java libraries or invoke a method on
such an object, the computer will execute code that you did not actually write. This code is instead pro-
vided within the library. Frequently, errors in your code are actually detected while executing instructions
provided within the libraries. When this happens, the lines that BlueJ includes after the first line of an
error message will describe steps performed within the libraries. In this case, to get information that will
actually help you determine where the error occurred, you must read through the message BlueJ displays
until you find the name of a method or class that you actually defined. The line number provided at the
end of that message will lead you to the line in your code that was executing when the error happened.

Breakpoints
Make sure that you have “fixed” the program by adding “cs.” to the machine name.

Next, before running the program again, make sure to clear the red error messages from BlueJ’s terminal
window. If you don’t, they will stay in the window and it is easy to get confused and think that a problem
you have fixed is still occurring.

To clear the messages:

• Make sure the window containing the error message is active (click on it once to be sure),

• Select “Clear” from the “Options” menu (or just press “K” while holding down the command key).

Now, compile the program, run it again, and try to access an email message. You will discover that the
program isn’t actually fixed yet. More red ink!

This time, the first line displayed should say

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

CS 134 Spring 2007

5

This indicates that BlueJ has encountered what it calls a null pointer exception. What this means is that
the program tried to use the value associated with some variable name before any value had actually been
assigned to the variable. That is, the variable is correctly declared, but no assignment statement that
would associate a meaning with the name had yet been executed.

As with the previous error message, BlueJ includes a long list of lines indicating what the program was
doing. These lines can be used to determine the exact line where the error occurred. All you have to do is
find the first of these lines that includes the name of the class SimplePopClient. It is easy to do in this
case because the name SimplePopClient appears in the very first line. Using the contents of this mes-
sage, find the line within the SimplePopClient program that caused the error.

The line you find should contain references to two variables, log and toServer. Given that the error is
a null pointer exception, the next step is to figure out which of these variables has never been assigned a
meaning. In this case, by process of elimination, we can tell that log must be the undefined variable be-
cause an assignment to toServer immediately precedes the line where the error occurred.

In general, it is not always so easy to determine which name’s meaning is undefined when a null pointer
exception occurs. In such cases, it would be nice if there was a way to ask BlueJ to tell you the values of
the variables used. Unfortunately, after an error like this has occurred, BlueJ cannot provide you with the
values of variables. It is possible, however to arrange things so that when we run the program again,
BlueJ will stop execution just before executing the troublesome line and let us examine the values of the
variables at that point.

To do this, we set what is called a breakpoint before executing the program. This is quite easy to do.
Simply position the mouse cursor in the narrow channel along the window’s left edge and on the line that
caused the error as shown below:

Then, click the mouse once and a little red stop sign will appear in the channel indicating that a break-
point has been set on that line. If you place the breakpoint on the wrong line by accident, just click again
on the stop sign to remove it and then click on the correct line to place another stop sign. In fact, you can

CS 134 Spring 2007

6

place stops signs on as many lines as you like and the computer will stop as soon as it reaches any of
these lines.

Now, run the program again, enter your account id, your password and a message number then click “Get
Message”. Then attempt to retrieve a message. This time, your program should stop just before the error
would occur. BlueJ will let you know that this has happened in two ways. First, in the window display-
ing the program’s text, it will indicate the line where execution was stopped by highlighting it and placing
an arrow in the channel with the stop signs as shown below:

In addition, a new “Debugger” window will appear. An image of the debugger window is shown below.

Chances are that the window that appears on your screen and its sub-panels won’t be quite big enough to
see things well. If so, take a little time to resize the components of your debugger window until they look
more like the image above.

CS 134 Spring 2007

7

In the upper portion of the window, it lists the “Threads” that are currently executing under BlueJ’s con-
trol. Each independent activity going on inside your machine is called a thread. The only thread you
really care about is the one running your code. In this case, BlueJ has indicated that this is being done by
the thread named AWT-EventQueue-0.

Below the thread list on the left side of the window, BlueJ provides a list of method names similar to the
one provided in the error message we examined earlier. At the top of the list is buttonClicked, because
that is the method whose code was executing when the breakpoint was encountered. Below button-
Clicked is actionPerformed, the method which invoked buttonClicked, an so on.

On the right side of the window, BlueJ displays the variable names being used and the values associated
with them. These are divided into three sections: the static variables (which we don’t even know about
yet), the instance variables, and the local variables.

One of the two variables log and toServer must be undefined. So use the scroll bar to the right of the
“Instace variables” pane of the debugger window to find them in this list. They will probably be near the
top. The value of one of them will be described as “null” within the debugger window. This is the vari-
able that was never assigned a value. The other variable will be described as an “object reference”.

As predicted, you should find that the log variable is undefined or “null”. Now, the hard part begins, you
have to look through the program to see how this could happen. The most obvious explanation would be
that the programmer simply forgot to assign a value to the variable. The BlueJ debugger cannot really
help you determine if this is the case, but the BlueJ editor can.

You can use the editor to search for any assignment statements involving log:

• Select “Find” from the “Tools” menu (or just press command-F).

• Enter “log =” in the dialogue that appears.

• Press “Find Next” once or twice.

Doing this should be enough to find the assignment to log that appears in the constructor as shown below.

CS 134 Spring 2007

8

If you look at the line before the assignment, you will discover the source of the problem. The construc-
tor includes a declaration for log. log is also declared as an instance variable by the declaration

 // +OK and -ERR messages from the server are displayed in this area
 JTextArea log;

which appears before the constructor. Java considers the instance variable log and the local variable log
to be distinct and separate. The assignment in the constructor associates a meaning with the local variable
log, but not with the instance variable. All the references to log found within the buttonClicked method
are interpreted as references to the instance variable log.

To fix this problem, all you need to do is delete the declaration of log that appears right before the as-
signment to log in the constructor.

• Make this change.

• Compile and run the program again to verify that it now works correctly.

You can now begin working on the improved email program described in the lab 3 handout. We should
warn you that when we wrote the “Getting Started” section of Lab 3, we did not account for the fact that
you would be completing this tutorial first. The lab handout says that when you start BlueJ, it will open
your Lab 2 project. Now, a) you will already have started BlueJ, and b) it will have the program you just
debugged open. This may be a bit confusing, but it should not cause any real problems.

CS 134 Spring 2007

9

im
po

rt
sq

ui
nt

.*;
im

po
rt

ja
va

x.
sw

in
g.

*;

/* *
Si

m
pl

eP
op

Cl
ie

nt
 --

- T
hi

s
pr

og
ra

m
 a

llo
ws

 it
s

us
er

 to
 v

ie
w

 *
m

ai
l m

es
sa

ge
s

ac
ce

ss
ed

 th
ro

ug
h

a
PO

P
cli

en
t

 */ pu
bl

ic
cla

ss
 S

im
pl

eP
op

Cl
ie

nt
 e

xt
en

ds
 G

UI
M

an
ag

er
 {

 //

 C
ha

ng
e

th
es

e
va

lu
es

 to
 a

dj
us

t t
he

 s
ize

 o
f t

he
 p

ro
gr

am
's

wi
nd

ow

 p
riv

at
e

fin
al

 in
t W

IN
DO

W
_W

ID
TH

 =
 6

50
, W

IN
DO

W
_H

EI
G

HT
 =

 5
50

;

 //
 S

ize
 o

f a
ll o

f t
he

 te
xt

 fi
el

ds
 u

se
d

in
 th

e
pr

og
ra

m

 p
riv

at
e

fin
al

 in
t F

IE
LD

_W
ID

TH
 =

 1
5;

 //

 D
im

en
sio

ns
 fo

r t
ex

t a
re

as
 u

se
d

to
 d

isp
la

y
m

es
sa

ge
s

an
d

se
rv

er
 re

sp
on

se
s

 p

riv
at

e
fin

al
 in

t T
EX

TA
RE

A_
W

ID
TH

 =
 5

0;

 p
riv

at
e

fin
al

 in
t L

O
G

_H
EI

G
HT

 =
 5

;

 p
riv

at
e

fin
al

 in
t M

ES
SA

G
E_

HE
IG

HT
 =

 2
0;

 //

 U
se

d
to

 e
nt

er
 th

e
PO

P
ac

co
un

t i
de

nt
ifie

r

 J
Te

xt
Fi

el
d

us
er

;

 //

 U
se

d
to

 e
nt

er
 th

e
PO

P
ac

co
un

t p
as

sw
or

d

 J
Pa

ss
wo

rd
Fi

el
d

pa
ss

;

 //

 U
se

d
to

 e
nt

er
 th

e
nu

m
be

r o
f t

he
 m

es
sa

ge
 to

 re
tri

ev
e

 J

Te
xt

Fi
el

d
m

es
sa

ge
Nu

m
;

 //
 E

m
ai

l m
es

sa
ge

s
ar

e
di

sp
la

ye
d

in
 th

is
ar

ea

 J
Te

xt
Ar

ea
 m

es
sa

ge
;

 //
 +

O
K

an
d

-E
RR

 m
es

sa
ge

s
fro

m
 th

e
se

rv
er

 a
re

 d
isp

la
ye

d
in

 th
is

ar
ea

 J

Te
xt

Ar
ea

 lo
g;

 //

 T
he

 c
ur

re
nt

 c
on

ne
ct

io
n

to
 th

e
se

rv
er

 N

et
Co

nn
ec

tio
n

to
Se

rv
er

;

 /*

 *

 In
st

al
l a

ll o
f t

he
 re

qu
ire

d
G

UI
 c

om
po

ne
nt

s

 *
/

 p

ub
lic

 S
im

pl
eP

op
Cl

ie
nt

()
{

 t
hi

s.
cr

ea
te

W
in

do
w(

 W
IN

DO
W

_W
ID

TH
, W

IN
DO

W
_H

EI
G

HT
);

 /

/ E
ac

h
JL

ab
el

/J
Te

xt
Ar

ea
 p

ai
r i

s
pl

ac
ed

 to
ge

th
er

 in
 a

 p
an

e
of

 th
ei

r o
wn

 J
Pa

ne
l c

ur
Pa

ne
l;

 /

/ C
re

at
e

fie
ld

s
fo

r e
nt

er
in

g
th

e
ac

co
un

t i
nf

or
m

at
io

n

 c

ur
Pa

ne
l =

 n
ew

 J
Pa

ne
l()

;

 c

ur
Pa

ne
l.a

dd
(n

ew
 J

La
be

l(
"M

ai
l A

cc
ou

nt
:"

))
;

 u
se

r =
 n

ew
 J

Te
xt

Fi
el

d(
 F

IE
LD

_W
ID

TH
);

 c
ur

Pa
ne

l.a
dd

(u
se

r)
;

 c
on

te
nt

Pa
ne

.a
dd

(c
ur

Pa
ne

l)
;

 c

ur
Pa

ne
l =

 n
ew

 J
Pa

ne
l()

;

 c

ur
Pa

ne
l.a

dd
(n

ew
 J

La
be

l(
"P

as
sw

or
d:

")
);

 p
as

s
=

ne
w

JP
as

sw
or

dF
ie

ld
(F

IE
LD

_W
ID

TH
);

 c
ur

Pa
ne

l.a
dd

(p
as

s
);

 c
on

te
nt

Pa
ne

.a
dd

(c
ur

Pa
ne

l)
;

 /

/ C
re

at
e

a
fie

ld
 fo

r t
he

 m
es

sa
ge

 n
um

be
r

 c
ur

Pa
ne

l =
 n

ew
 J

Pa
ne

l()
;

 c
ur

Pa
ne

l.a
dd

(n
ew

 J
La

be
l(

"M
es

sa
ge

 N
um

be
r T

o
Re

tri
ev

e:
")

);

 m

es
sa

ge
Nu

m
 =

 n
ew

 J
Te

xt
Fi

el
d(

 F
IE

LD
_W

ID
TH

);

 c

ur
Pa

ne
l.a

dd
(m

es
sa

ge
Nu

m
);

 c
on

te
nt

Pa
ne

.a
dd

(c
ur

Pa
ne

l)
;

 /

/ I
ns

ta
ll t

he
 b

ut
to

n
an

d
te

xt
 a

re
as

 in
 th

e
wi

nd
ow

 c
on

te
nt

Pa
ne

.a
dd

(n
ew

 J
Bu

tto
n(

 "G
et

 M
es

sa
ge

")
);

 m
es

sa
ge

 =
 n

ew
 J

Te
xt

Ar
ea

(M
ES

SA
G

E_
HE

IG
HT

, T
EX

TA
RE

A_
W

ID
TH

);

 c

on
te

nt
Pa

ne
.a

dd
(n

ew
 J

Sc
ro

llP
an

e(
 m

es
sa

ge
)

);

 J

Te
xt

Ar
ea

 lo
g;

 l
og

 =
 n

ew
 J

Te
xt

Ar
ea

(L
O

G
_H

EI
G

HT
, T

EX
TA

RE
A_

W
ID

TH
);

 c
on

te
nt

Pa
ne

.a
dd

(n
ew

 J
Sc

ro
llP

an
e(

 lo
g

))
;

 }

 /*

 *

 W
he

n
th

e
bu

tto
n

is
cli

ck
ed

, i
nt

er
ac

t w
ith

 th
e

PO
P

se
rv

er
 to

 *

 a
cc

es
s

th
e

re
qu

es
te

d
m

es
sa

ge
.

 *

/

 p
ub

lic
 v

oi
d

bu
tto

nC
lic

ke
d(

 J
Bu

tto
n

wh
ich

)
{

 /
/ C

on
ne

ct
 to

 th
e

se
rv

er
 a

nd
 d

isp
la

y
in

itia
l r

es
po

ns
e

 t
oS

er
ve

r =
 n

ew
 N

et
Co

nn
ec

tio
n(

 "c
or

tla
nd

.w
illi

am
s.

ed
u"

, 1
10

);

 l
og

.s
et

Te
xt

(t
oS

er
ve

r.i
n.

ne
xt

Li
ne

()
+

"\n
")

;

 /
/ S

en
d

ac
co

un
t i

nf
or

m
at

io
n

an
d

di
sp

la
y

re
sp

on
se

s

 t

oS
er

ve
r.o

ut
.p

rin
tln

("
US

ER
 "

+
us

er
.g

et
Te

xt
()

);

 l

og
.a

pp
en

d(
 to

Se
rv

er
.in

.n
ex

tL
in

e(
) +

 "\
n"

);

 t

oS
er

ve
r.o

ut
.p

rin
tln

("
PA

SS
 "

+
ne

w
St

rin
g(

 p
as

s.
ge

tP
as

sw
or

d(
))

);

 l

og
.a

pp
en

d(
 to

Se
rv

er
.in

.n
ex

tL
in

e(
) +

 "\
n"

);

 /
/ R

et
rie

ve
 a

nd
 d

isp
la

y
th

e
sp

ec
ifie

d
em

ai
l m

es
sa

ge

 t

oS
er

ve
r.o

ut
.p

rin
tln

("
RE

TR
 "

+
m

es
sa

ge
Nu

m
.g

et
Te

xt
()

);

 l

og
.a

pp
en

d(
 to

Se
rv

er
.in

.n
ex

tL
in

e(
) +

 "\
n"

);

 t

oS
er

ve
r.a

dd
M

es
sa

ge
Li

st
en

er
(t

hi
s

);

 /
/ T

er
m

in
at

e
th

e
co

nn
ec

tio
n

 t
oS

er
ve

r.o
ut

.p
rin

tln
("

Q
UI

T"
);

 }

 p

ub
lic

 v
oi

d
da

ta
Av

ai
la

bl
e(

)
{

 S
tri

ng
 s

er
ve

rR
es

po
ns

e
=

to
Se

rv
er

.in
.n

ex
tL

in
e(

);

 i

f (
 s

er
ve

rR
es

po
ns

e.
st

ar
ts

W
ith

("
+O

K"
)

) {

lo

g.
ap

pe
nd

(s
er

ve
rR

es
po

ns
e

+
"\n

")
;

to
Se

rv
er

.c
lo

se
();

 }
 e

lse
 {

m
es

sa
ge

.a
pp

en
d(

 s
er

ve
rR

es
po

ns
e

+
"\n

")
;

 }

 }

 p
ub

lic
 v

oi
d

co
nn

ec
tio

nC
lo

se
d(

)
{

 l
og

.a
pp

en
d(

 "S
er

ve
r h

as
 c

lo
se

d
co

nn
ec

tio
n\

n"
);

 t
oS

er
ve

r.c
lo

se
();

 }

}

CS 134 Spring 2007

10

