
Computer Science 134 Homework 7 Spring 2007

Encoding documents, music, images, and video for the purposes of compression is a consistent theme in this
course. Our primary focus on compression is through the aperture of Huffman’s algorithm which finds optimal binary
prefix-free codes for a set of n symbols s1, . . . , sn which occur o1, . . . , on times respectively. The procedure creates
a set of trees – one for each symbol – and initializes the weight wi of each tree to oi. It then selects two trees with
minimum weight, and replaces them with a new tree composed of the subtrees. This new tree has weight equal to the
sum of weights of its subtrees. The procedure ends when only a single tree remains.

Huffman Tree Cost
The cost of a Huffman tree is equivalent to the size of the document when it’s encoded using the code defined by the
tree. In other words, if symbol si appears oi times and si is a leaf at depth di in the tree then each occurrence of si in
the document1 is encoded with di bits. As a result, si contributes cost oi×di to the total cost of the encoded document.
In general the total cost of the encoded document (and hence the tree) is

o1 × d1 + o2 × d2 · · · + on × dn (1)

For example, consider the following document (of length 11) composed of 5 symbols:

ABRACADABRA

Table 1 lists each symbol and its number of occurrences.

Symbol A B R C D
Occurrences 5 2 2 1 1

Table 1: A list of symbols and their respective occurrences for the document ABRACADABRA

Running Huffman’s algorithm on the table might produce the following Huffman tree:

1 1 2 2

2 4

6 5

11

C D B R

A

0
1

1

10

0

0 1

Figure 1: A possible tree produced by Huffman’s algorithm on the input given in Table 1

Encoding the document according to the code defined by the Huffman tree yields

10100111000100110100111

which has a length of 23. In other words, the cost of the tree is 23. We can verify this is indeed the cost of the code
by noting that in the tree, A has depth 1 and the remaining symbols have depth 3. Hence, using just the tree, we can
also arrive at the cost by using Equation 1.

1 × 3 + 1 × 3 + 2 × 3 + 2 × 3 + 5 × 1 = 3 + 3 + 6 + 6 + 5 = 23

Surprisingly, one does not need to actually create a tree to compute the cost of a Huffman code. The idea is to keep
a running total T of the current cost of encoding the document. To see how, imagine that we are creating the Huffman

1document here is really just a place holder for music, image or video – that is a series of symbols

Due: 16 April 2007 1



Computer Science 134 Homework 7 Spring 2007

tree given in Figure 1. Initially, our running total is T = 0. Every time we merge two trees, the codewords for the
symbols in those trees increase by 1 bit. Our procedure works by adding in this additional codeword cost at the time
of a merge.

• We begin by merging C and D. We now know that each occurrence of C and D will be replaced by codewords
with length at least 1, so each occurrence of C and each occurrence of D will contribute cost at least 1 to the
overall cost. Since C and D each occur only once, T = T + 2 = 0 + 2 = 2.

• Next we merge B and R. Since B and R will be replaced by codewords with length at least 1, each occurrence
of B and each occurrence of R will contribute cost at least 1 to the overall cost. Since B and R each occur twice
they will contribute an additional cost of 2 + 2 = 4 to T . Hence, T = 6.

• Next we merge the CD tree with the BR tree. The CD tree has weight 2. This means C and D occur 2 times
collectively in the document. The BR tree has weight 4. This means B and R occur 4 times collectively in the
document. Since we are merging these two nodes, we know the codewords for C and D will be 1 bit longer in
the document. The same is true for B and R. Since C and D occur twice collectively, this merge adds a cost of
2 to the total. Similarly, since B and R occur 4 times collectively, the merge adds a cost of 4 to the total. Hence
the total is now T = T + 2 + 4 = 6 + 2 + 4 = 12.

• Finally, we merge the CDBR node with the A node. Each occurrence of A will be encoded with a codeword of
length 1 and the symbols in the CDBR node each require an additional bit in their keywords. Since A occurs 5
times and C,D,B, and R occur 6 times collectively, our total is T = T + 5 + 6 = 12 + 5 + 6 = 23.

Note that while we discussed computing the running total in terms of tree merges, we don’t actually need to create
or merge any trees; we just need to find the two smallest weights and replace them with their sum in the current list
of weights. This means each merge operation is really just a sum operation. Each sum operation has an associated
update to the running total so it makes sense to talk about the value of the running total after each sum operation. For
example, the running total after each sum operation for the Huffman tree in Figure 1 is given below:

Sum Operation 1 2 3 4
Running Total 2 6 12 23

Question 1. Below are two Huffman trees called Tree 1 and Tree 2 respectively. We would like you to show us the
running total of the current cost after each sum operation for each tree. We have provided running total tables for you,
so all you need to do is fill them in and hand in this sheet of paper.

1 2 2 2

3 4

7 5

12

A B C D

0
1

1

10

0

0 1

Tree 1

E

1

Running Total

432Sum Operation

1 2 2 3

3 5

8 6

14

A B C D

0
1

1

10

0

0 1

Tree 2

3 3

E F

51

Running Total

432Sum Operation

Due: 16 April 2007 2


