CS 434 Meeting 9 — 2/2/06 4. First, just as we had to introduce operand descriptors to handle tem-
poraries, we must introduce some sort of structure to handle the code
Anouncements labels we will branch to.
1. Phase 1.2 is still not due today.
e Since you will be generating assembly code, you can just use

2. Assignment on formal grammars is due today strings to hold label names

3. Phase 2.1starts today. Suggested completion deadline is in 12 days. — We must assume a routine ‘genlabel’ that can generate unique
labels and a routine ‘placelabel’ which will associate a label
Generating Code for Conditionals with the next instruction we generate.

— The routines that output branch instructions will accept la-
1. We now want to look at how to generate code for constructs that in- bels as operands.

volve the use of branch or jump instructions. Clearly control structures
(such as if and while statements fall in this category). We will see that 5. Given such a “codelabel” type, we could easily write a function to
it also makes sense to include the operators that occur in most condi- generate code for if statements:

tional expressions (relationals and logical operators).
e To emphasize the issue of object lifetime (or perhaps just to be

2. First, consider the “obvious” code template for an if statement of the contrary), I do not depend on malloc and free to manage code
form: labels. Instead, I prove that C is a wonderful (or horrible) lan-
guage by allocating them in function frames and passing pointers
if conditional then stmt 1 else stmt 2 to them all over the place!
e We will also ignore the possibility of an empty else part for now.
Namely:
gen_if (node * ifstmt)
code to compute value of conditional { codelabel e]_se]_abe]_, joinlabel;
CMP #0, cond-result opdesc *condValue;
BEQ ELSEPART2
code for stmt 1 genlabel (&elselabel) ;
BRA JOINUPZ2 genlabel(&joinlabel) ;
ELSEPART2
code for stmt 2 condValue = genexpr(ifstmt->internal.child[0], FALSE);
JOINUP2
output("CMP", "#0", condValue);
3. We will quickly find that this “obvious” code is not such a good idea, outputBranch("BEQ", &elselabel);
but to prepare to better understand a more sophisticated alternative, gen_stmt (ifstmt->internal.child[1]);
let’s first make sure we have the mechanisms needed to generate code outputBranch("JMP", &joinlabel);
based on this simple template. place_label (&elselabel);

gen_stmt (ifstmt->internal.child[2]);
place_label(&joinlabel);

6. Now, consider the “obvious” code for a simple condition like “x > 0”:

CMP X,#0

BGT SETTRUE

CLR DO

BRA JOINUP1
SETTRUE MOVE #1,D0
JOINUP1 ...

. This code looks reasonable until you combine it with the code that
would be generated by the if statement routine we proposed if the
condition were included in an if statement of the form

if (x$%$0) {

stmt1l
} else {
stmt2
}
yielding:
CMP X,#0
BGT SETTRUE
CLR DO
BRA JOINUP1

SETTRUE MOVE #1,DO

JOINUP1 CMP #0, DO
BEQ ELSEPART2

code for stmtl

BRA JOINUP2

ELSEPART2

10.

code for stmt 2
JOINUP2

. you would really like the code for a statement of the form

if x > 0 then stmt 1 else stmt 2

to look like:

CMP X,#0

BLE ELSEPART

code for stmt 1

BRA JOINUP
ELSEPART

code for stmt 2
JOINUP ...

. To avoid silly code like this, we will implement two distinct code gen-

eration procedures for expressions.

One generates code that leaves the value of the expression in a location
described by the operand descriptor returned (genexpr). This is the
routine we discussed last time. This routine will be called to process
expressions used as parameters, in assignment statements, etc.

The other expression code generator will generate code to alter the flow
of control based on the value of the expression (gen-cond-expr). This
routine will be used to generate code for expressions used as conditions
in loops and if statements.

When an expression is used as a boolean, we generally want the code
for the expression to either “fall through” to the then part or loop body
or “branch around” the then part or loop body. To generate nice code
we need to tell the code generating routine when we want to branch
around (i.e. when the boolean is true or false) and where we want to go
to. So, gen-cond-expr takes 2 parameters in addition to an expression
subtree:

11.

12.

sense which is a boolean. If it is true then we want to “branch around”
if the boolean is true.

target which is the code-label to which the code should “branch
around”.

By examining a (not particularly smart) version of gen-if-statement,
we can see how gen-cond-expr can be used (we will continue to assume
that there is an else part):

gen_if (node * ifstmt)
{ codelabel elselabel, joinlabel;

genlabel (&elselabel) ;
genlabel(&joinlabel);

gen-cond-expr (ifstmt->internal.child[0],
FALSE,
&elselabel);
gen_stmt (ifstmt->internal.child[1]);
output(¢“JMP’’, &joinlabel);
place_label (&elselabel);
gen_stmt (ifstmt->internal.child[2]);
place_label(&joinlabel);

gen-cond-expr must be able to generate code for any expression. The
most interesting cases as far as our effort to ensure that the code we
generate for if statements is efficient are those involving relational and
logical operators. Accordingly, as a first sketch of the code for the
gen-cond-expr function we will limit our attention to separating out
the three cases it must address:

gencondexpr (node *expr, int sense, codelabel *target)
{
if (expr’s operator is an arithmetic one) {
gencondarithmetic(expr, sense, target);

13.

14.

15.

} else if (expr’s operator is a relational)
genrelational (expr,sense,target)

else
genlogical (expr,sense,target)

3

The interesting work is going to be done in genrelational and genlogical.

genrelational (node *expr, int sense, codelabel *target)
{ oprndesc *leftop, *rightop;

leftop = genexpr(expr->internal.child[0])
rightop = genexpr (expr->internal.child[1])

output "CMP leftop,rightop"

switch (expr->internal.type) {
case Neq:
if (sense)
output "BEQ target"
else
output "BNE target"
break;
case Nne:

Combining this with the routine for generating if statements sketched
above we can see how this produces the type of code we would want
for simple if statements that use a single relational as a condition.

In addition to handling relational operators better than genExpr, this
scheme leads to a simple implementation of “short-circuit” logical op-
erators. Consider just a bit of genlogical:

genlogical(node *expr, int sense, codelabel *target)
{
if (operator is ’and’) {
genlabel(&fallthru);

if (sense) {

gencondexpr(left-sub-expr, FALSE , &fallthru);
} else

gencondexpr (left-sub-expr, FALSE , target);
gencondexpr (right-sub-expr, sense, target);
placelabel(&fallthru);

} else if (operator is ’or’) {

} else if (operator is not) {

16. gen-cond-expr must be able to generate code for any expression, in-
cluding simple arithmetic operations. The easiest way to do this is to
count on the genexpr function we discussed in the last class to calculate
the value of the expression and then compare it to 0.

gencondarithmetic(node *expr, int sense, codelabel *target)
{ oprndesc *valdesc;

valdesc = genexpr (expr)
output "CMP #0,valdesc"
if (sense)

output "BNE target"
else

output "BEQ target"
¥

17. Genexpr can use a similar trick to generate code for logical and re-

lational operators. That is, genexpr will call gen-cond-expr for such
operators.

