
CS 434 Meeting 7 — 2/23/06

Anouncements
1. Phase 1.2 has now officially begun. Don’t forget to change the SUB-

PHASE variable in your makefile. It will be due on Thursday, March
2nd.

Parse Trees and Ambiguity

1. For our purposes, it is not enough that a grammar specify the set of
strings that belong to a language, we also want a grammar to impose
grammatical structure on strings since this structure influences the
meaning associated with a string.

2. Representing structural information as a tree provides a better way to
eliminate irrelevant choices about the order of non-terminal expansion.

Parse Tree A parse tree for a sentential form S of a grammar G is a
tree in which each node is labeled with an element of (Vt ∪ Vn) in
such a way that:

(a) The root is labeled with the start symbol,

(b) the nodes of the frontier of the tree (i.e. the leaves of the
tree) are labeled with the symbols that form S, and

(c) each interior node is labeled with some non-terminal, N, such
that N→α ∈ P and α is the string of labels found on the
node N’s children.

3. Given a parse tree, we can extract a derivation by walking the tree.
Depending on whether we visit the children of each node left-to-right or
right-to-left, we will obtain a derivation with one of two special forms:

Direct leftmost derivation Given a grammar, G = (Vt, Vn, S, P ),
and two strings x and y in (Vt ∪ Vn)∗ such that x = αAβ and
y = αγβ where α ∈ V ∗

t
, γ, β ∈ (Vt ∪ Vn)∗ and (A, γ) ∈ P we say

that y can be directly derived leftmost from x. In this case we
write x=⇒

lm
y.

Direct rightmost derivation Given a grammar, G = (Vt, Vn, S, P ),
and two strings x and y in (Vt ∪ Vn)∗ such that x = αAβ and
y = αγβ where β ∈ V ∗

t
, α, γ ∈ (Vt ∪ Vn)∗ and (A, γ) ∈ P we say

that y can be directly derived rightmost from x. In this case we
write x=⇒

rm
y.

Left-most Derivation Given a grammar, G = (Vt, Vn, S, P ), and two
strings x and y in (Vt ∪ Vn)∗ we say that x derives y leftmost if
there exists a sequence of string α0, α1, α2, ..., αm all in (Vt ∪Vn)∗

such that

(a) for all i < m, αi
=⇒
lm

αi+1 ,

(b) x = α0, and

(c) y = αm.

In this case we write x
∗

=⇒
lm

y.

Rightmost Derivation Given a grammar, G = (Vt, Vn, S, P ), and
two strings x and y in (Vt∪Vn)∗ we say that x derives y rightmost

if there exists a sequence of string α0, α1, α2, ..., αm all in (Vt∪Vn)∗

such that

(a) for all i < m, αi
=⇒
rm

αi+1,

(b) x = α0, and

(c) y = αm.

In this case we write x
∗

=⇒
rm

y.

Intuitively, a derivation is rightmost (leftmost) if at each step it
is the rightmost (leftmost) non-terminal that is replaced by the
right-hand side of some production.

The first derivation shown earlier happens to be a leftmost deriva-
tion of x a x z y y in G.

Attribute Grammars as a framework for semantic processing

1. Semantic processing routines often return values that summarize the
properties of the sub-phrases to which they were applied.

• For example, your function to process expressions should return
the type descriptor of the expression.

1



2. It can be useful to think of the values returned by such semantic pro-
cessing routines as labels that get affixed to the nodes of the parse tree
or abstract syntax tree as it is processed.

• These “labels” are often referred to as “attributes”. Those in-
terested in building formal systems for specifying the details of
semantic processing often base their schemes on the notion of
such attribute values.

– A grammar for the souce language or an abstract grammar for
abstract syntax trees is annotated with rules that associate
attribute values with the terminals and non-terminals of the
grammar.

– Synthesized attributes are those whose values are determined
by a node’s subtrees (a phrase’s substructure). The type of
an expression might be an example.

– Inherited attributes are those whose values are determined
by the context of a phrase (the current scope’s nesting level,
the entire symbol table (in a purely applicative compiler) ).

Lowering Expression Sub-trees

1. We can solidify our understanding of the run-time layout of mem-
ory (and get a head start on code-generation) by considering how to
transform the trees produced by the parser to represent references to
variables into trees that explicitly describe the address calculations and
memory references involved.

2. A reference to an identifier as a variable will be represented in the
syntax tree by an Nrefvar node with an Nident node for the variable’s
name as its child.

3. To actually access a variable in memory at run-time the hardware
must add the displacement to the variable to the frame pointer for the
method or pointer to the object in which the variable is stored.

• We can think of an Nrefvar node as representing the value stored
in the memory location described by its child.

• We already have node types to represent addition (Nplus) numeric
constants (Nconst), and the pointer to the current object (Nthis),
so if we add a node type to represent a reference to the active
method’s frame (NFramePtr), we can explicitly describe the steps
required to access a variable.

• There is also a field in the Nrefvar node that can be used to hold
the displacement to a variable relative to a given memory location.

4. This leads to the following simple transformation for simple variable
references:

• For instance variables local to the class of the current method, we
just specify the offset to the variable relative to the “this” pointer.

Nthis

Nrefvar

Nident = X

displ(X)

Nrefvar

• For variables declared as locals in a method and for method pa-
rameters, we use the offset to the variable relative to the method
frame pointer.

NFramePtr

Nrefvar Nrefvar

displ(X)

Nident = X

• Given the organization of the static links, all we need to do for
references to non-local variables is follow the chain of static links

2



up the correct number of levels. For example, the following tree
could be used to reference a variable declared two levels above the
current class.

Nthis

Nrefvar Nrefvar

displ(X)

Nrefvar

Nrefvar

offset

offset
static link

Nident = X

static link

5. Similar transformations can be appled to more complex variables.
Nsubs nodes can be transformed into trees that describe the subscript
calculations required. In such a transformed tree:

• the root will again be an Nplus node

• the left subtree will just be a transformed version of the array
sub-variable tree (as with the record sub-variable in the Nselect
case).

• the right subtree will in general be an Ntimes node multiplying
the subscript expression by the element size. In Woolite, since all
array elements occupy just one word, we can leave out the Ntimes
node.

expression
expression

lowered

array
expression

subscript
expression

lowered
array

subscript

Nrefvar

Nsubs

Nplus

Nrefvar

6. There will be several advantages to making these transformations. Be-
cause they replace special purpose tree nodes (Nident and Nsubs) with
nodes types that would already be present in the tree (Nplus, Ntimes),
they reduce the number of cases to be handled by later phases (code
generation, optimization).

7. There is a “hook” included in the format of the Nrefvar node to support
later optimizations:

• A terrifying consequence of the transformations I have suggested
is that once they are complete, there would be little information
left in the tree about which variables are being referenced by the
expressions in a program.

To avoid this, the Nrefvar node includes a field that you may
someday use to hold a pointer for a descriptor of the variable
being referenced.

Code Generation for Expressions

3



1. First, I would like to give a quick overview of a simple, “ad hoc”
approach to code generation in hopes of:

• showing you that code generation for expressions can be ap-
proached as a process of applying “code templates” to the syntax
tree,

• making you recognize some of the issues involved in selecting the
type of “attribute” one will associated with expression sub-trees,
and

• making you understand the desirability of a clear distinction be-
tween “high level” and “low level” code generation.

2. To do this, we will limit our attention to expressions including simple
arithmetic operators:

• We will see later that operators typically used in decision making
(relationals and logicals) warrant a very different approach.

3. When I speak of applying “code templates” I am basically talking
about the fact that the correct code for an expression can be generated
using very little information about the context in which the expression
occurs.

• The correct code for ‘expr1 + expr2’ will look something like:

code to compute the value of expr1

code to compute the value of expr2

move expr2’s-value,location-for-result
add expr1’s-value,location-for-result

All one has to do is make sure that each code generation routine tells
its caller where the results can be found.

4. Each code generation routine will use the “attribute value” it returns
to tell its caller where the result of the code it produces can be found.

We will call these attributes operand descriptors.

5. To illustrate the use of operand descriptors, consider the following
skeleton of a very naive routine to generate code for the addition op-
erator. It assumes that “operand desc” is the type used to represent
the attribute values returned during code generation for expressions.

operand_desc *expr_gen(node * expr)

{ operand_desc *left_loc, *right_loc, *new_loc;

switch (expr->internal.type) {

.

.

case Nplus:

left_loc = expr_gen(expr->internal.child[0]);

right_loc = expr_gen(expr->internal.child[1]);

new_loc = get_temporary();

output ‘‘move left_loc,new_loc’’;

output ‘‘add right_loc,new_loc’’;

opFree(left_loc);

opFree(right_loc);

return new_loc;

}

.

.

6. When writing such a routine, we would rather not have to worry about

• How to get a temporary.

• What type of “move” instruction we actually need to generate if
left loc is a constant, variable in memory, etc.

7. The issues of allocation registers and other temporaries and actual
instruction selection decisions that depend on the operand types should

4



be handled by “low level” code generation routines (with names like
get temporary and output instructions).

8. Routines like the “expr gen” function sketched above form the “high
level” component of the code generator in that they are concerned with
mapping the operations of the source language into the operations the
hardware can perform, but not in the precise details of each instruction
generated.

9. Maintaining a clear distinction between high level and low level code
generation tasks will both keep your code well organized and result in
a code generator that could be revised to output code for a different
target machine with minimal effort.

Operand Descriptors

1. In addition to providing a mechanism for communication between high-
level code generation routines, the operand descriptor type is an essen-
tial component of the interface between the high and low level code-
generation modules.

2. The type used for operand descriptors should be flexible enough to
handle several possibilities:

registers Since access to values in registers is generally faster than
access to memory, we would like the code we generate to keep
intermediate results in registers whenever possible.

memory locations Since we will eventually run out of registers, our
compiler may have to store some intermediate results in memory.
Even if this were not the case, other factors would make it neces-
sary/desirable to have operand descriptors for memory locations.

• when we process an expression like x+y we would like to pro-
duce something like:

move x,D1
add y,D1

rather than

move x,D1
move y,D2
add D2,D1

• To make this possible, the routine that “generates code” for
the sub-expression “y” has to be able to simply return a de-
scriptor for y where it resides in memory without producing
any code.

constants When processing an expression like x+1 we would like to
produce the code:

move x,D1
add #1,D1

rather than

move x,D1
move #1,D2
add D2,D1

5


