
CS 434 Meeting 6 — 2/21/06

Announcements
1. When you are done with phase 1.1, simply type “make submit”.

Type Checking

1. Type checking is basically the enforcement of a set of rules designed to ensure
that only valid operands are provided to the various operations that can be
invoked within a program.

2. To make the enforcement of such rules possible within a compiler, the compiler
must have an encoding that can be used to represent the types associated with
expressions by the rules of the type system.

• An obvious approach to handling such type specifications, is to provide
distinct descriptors (i.e. structures or objects) for type specifications.

– Pointers to type descriptors would be found in:

(a) the “variable type” fields in declaration descriptors for variable
names,

(b) return type fields,

(c) the “type” fields in formal parameter name descriptors, and

3. Structured types are not really “described” by any single structure. Instead,
the descriptors for structured types act as the roots of trees of descriptors that
represent the full structure of the type.

• The tree structure must be traversed to determine the type of a complex
“variable” like x.b(3).c.

4. One aspect of the type rules of a language that determines the degree to
which the trees/graphs representing types must be traversed is the language’s
definition of type compatibility or “matching”

5. No matter how type equivalence is defined, there are usually lots of things to
check.

• The types used on the left and right hand sides of assignment statements
must “match”.

• Method calls must be checked both to make sure that the numbers of
actuals and parameters match and that their types match.

– Warning. The ordering of parameter descriptors can cause annoying
problems.

• You must check the operand types for each built-in operator.

– In general, processing operators can be complicated by implicit con-
version rules (e.g. integers become reals when added to reals).

– Checking most binary and unary operators is easy in Woolite. They
all take and return integers. The equality operator is an exception
since you can use it to compare values of other types

• Your routine to process variables should check:

– That names used as variables are variables!

– That the type of the sub-variable is some array type when processing
an Nsubs.

• The types required by expressions used in certain contexts are fixed by
the language.

– Most languages require booleans as conditions in ifs and whiles
(Woolite requires integers).

6. Semantic processing routines often return values that summarize the proper-
ties of the sub-phrases to which they were applied.

• For example, to make type checking possible your function to process
expressions should return the type descriptor for the type of the expres-
sion.

Handling Errors in Declarations

1. In general, you want to avoid generating multiple error messages in response
to a single mistake in the program.

2. It is quite easy for an error in a declaration to produce a flood of error mes-
sages.

• Consider what happens if you accidentally declare something to be of
the wrong type or mis-spell a variable’ s name in it declaration. Every
reference to the variable might produce a type error.

• If you naively follow the rule that an expression is a type error unless both
of its operands have appropriate types, then a expression that contains an
error will cause a redundant error in every level of the larger expression
in which it appears

3. There are several ways that you can minimize the number of redundant error
message you generate.

1

• If an error is detected in a declaration, attempt to build an (incomplete)
declaration descriptor anyway.

– This can avoid a flood of “undeclared variable” messages later.

• If you can not associate a type with an object, set the type field in its de-
scriptor to a value indicating that an error was detected when attempting
to resolve the type. Then, don’t generate an error when you find yourself
processing an expression one of whose operands is of this “error” type
(NULL may make a good error value).

• Return the “unknown type” value when you process any expression
whose type can not be determined due to an error.

• Create a dummy declaration for any reference to an undefined variable
once you have produced at least one message announcing the problem
so that later references will not result in errors. To do this right, such
dummy declarations may need to be carefully exported when you exit a
scope (you don’t need to do this).

Informal Formal Grammars

1. Basic introduction to context-free grammars.

• A grammar is a specification for a language that is composed of rules
like the following which (informally) says that anything composed of an
expression followed by an assignment operator and a variable is a valid
statement.

< stmt > → < var > = < expr >

This symbols in angle brackets denote classes of syntactic phrases.

• The syntactic phrases in most interesting grammars are frequently de-
fined recursively (either directly or indirectly).

< stmt > → while (< expr >) < stmt >

• When used as a notation for specifying languages, various notational
conveniences are employed (such as using a | to abbreviate a set of rules
that would have the same phrase type on the left hand side).

< stmt > → < var > = < expr >

| while (< expr >) < stmt >

Formal Grammars

1. Context free grammars are a notation for describing sets of strings (each
phrase type is really just the name of a set of strings). So, we start our formal
study of grammars with some basic definitions concerning strings and sets of
strings:

Alphabet A finite, non-empty set of symbols.

String A string over some alphabet (Σ) is a finite, possibly empty sequence
of symbols from Σ. We will use ǫ to denote the empty string.

Language A language over an alphabet is just a set of strings over that
alphabet.

Concatenation If x and y are two strings over Σ, then their concatenation,
xy, is the sequence of characters obtained by placing the sequence of
characters in x before the sequence y. If z = xy is a string, we say that
x is a prefix of z and y is a suffix of z.

Products If X and Y are languages over some alphabet, then their product,
XY, is defined to be:

{xy | x ∈ Xand y ∈ y}

Powers If X is a language over Σ we define Xn to be the language containing
only the empty string if n = 0 and XXn−1 otherwise.

Closures If X is a language over Σ we define X+, the positive closure of X,
to be the union of the sets X1, X2, X3, . . . and X∗, the closure of X,
to be the union of X0 and X+.

2. Now, the definition you have all been waiting for:

Context-free Grammar A context free grammar is composed of:

(a) A finite alphabet Vt called the terminal symbols.

(b) A finite alphabet Vn called the non-terminal symbols.

(c) A distinguished element of the set Vn denoted by the symbol S and
referred to as the goal symbol or start symbol.

(d) A finite set P of pairs composed of one element from Vn and one
element from (Vt ∪Vn)∗ called productions. Productions are written
in the form:

A→X1X2...Xm

3. There is an interesting, alternate approach to interpreting the productions of
a grammar. Rather than viewing them as rules for producing strings that
belong to the language defined, we can view them as set inequalities over a
set of variables composed of the non-terminal symbols.

• In this interpretation,

< stmt > → while < expr > do < stmt >

is interpreted as

2

< stmt > ⊇ while < expr > do < stmt >

where < stmt > and < expr > are viewed as the names of sets of strings
(i.e. sub-languages) and keywords and other terminal symbols denote
the set containing just that symbol (i.e. do denotes { “do” }).

• The “interesting” thing about this view is that there are multiple solu-
tions to the set of inequalities corresponding to the typical set of produc-
tions. In particular, letting all non-terminals denote Σ∗ generally does
the trick. The “ standard ” interpretation of productions corresponds to
the smallest sets that satisfy the inequalities interpretation.

The “standard” interpretation is based on the next concept we consider,
the derivation.

4. The association between a context free grammar and the language it describes
is formalized through the notion of a derivation:

Direct derivation Given a grammar, G = (Vt, Vn, S, P), and two strings x

and y in (Vt ∪ Vn)∗ such that x = αAβ and y = αγβ where α, γ, β ∈
(Vt ∪ Vn)∗ and (A, γ) ∈ P we say that x directly derives y. In this case
we write

x=⇒y

5. Examples of direct derivations.

Consider G =

< blob > → x < glob > < blob > y
< blob > → z
< glob > → a < glob >

< glob > → ǫ

• < blob > =⇒ x < glob > < blob > y.

• x < glob > a =⇒ x a < glob > a

6. More on the notion of a derivation:

Derivation Given a grammar, G = (Vt, Vn, S, P), and two strings x and y

in (Vt ∪ Vn)∗ we say that x derives y if there exists a sequence of string
α0, α1, α2, ..., αm all in (Vt ∪ Vn)∗ such that

(a) for all i < m, αi=⇒αi+1,

(b) x = α0, and

(c) y = αm.

In this case we write
x

∗

=⇒y

The sequence α0, α1, α2, ..., αm is called a derivation of length m of y

from x.

7. Using the grammar G shown above we can say that that < blob >
∗

=⇒
xaxzyy since:

• < blob > =⇒ x < glob > < blob > y

• x < glob > < blob > y =⇒ x a < blob > y

• x a < blob > y =⇒ x a x < glob > < blob > y y

• x a x < glob > < blob > y y =⇒ x a x < blob > y y

• x a x < blob > y y =⇒ x a x z y y

8. Time for more definitions:

Sentential form Given a grammar, G, a string is called a sentential form of
G if it is derivable from the start symbol of G.

Sentence A sentential form containing only symbols from the terminal vo-
cabulary of a language is called a sentence.

L(G) The language defined by a grammar G is the set of all sentences.

L(G) = {s | S
∗

=⇒s & s ∈ V ∗

t
}

Parse Trees and Ambiguity

1. For our purposes, it is not enough that a grammar specify the set of strings
that belong to a language, we also want a grammar to impose grammatical
structure on strings since this structure influences the meaning associated with
a string.

2. It is not clear a derivation provides the information we want about grammat-
ical structure since a single string may have many derivations.

• We have seen that given the grammar:

< blob > → x < glob > < blob > y
< blob > → z
< glob > → a < glob >

< glob > → ǫ

we can say < blob >
∗

=⇒ xaxzyy since:

3

– < blob > =⇒ x < glob > < blob > y

– x < glob > < blob > y =⇒ x a < glob > < blob > y

– x a < glob > < blob > y =⇒ x a < blob > y

– x a < blob > y =⇒ x a x < glob > < blob > y y

– x a x < glob > < blob > y y =⇒ x a x < blob > y y

– x a x < blob > y y =⇒ x a x z y y

• It is also possible to show this using the derivation:

– < blob > =⇒ x < glob > < blob > y

– x < glob > < blob > y =⇒ x < glob > x < glob > < blob > y y

– x < glob > x < glob > < blob > y y =⇒ x < glob > x < blob >

y y

– x < glob > x < blob > y y =⇒ x < glob > x z y y

– x < glob > x z y y =⇒ x a < glob > x z y y

– x a < glob > x z y y =⇒ x a x z y y

3. Representing structural information as a tree provides a better way to elimi-
nate irrelevant choices about the order of non-terminal expansion.

Parse Tree A parse tree for a sentential form S of a grammar G is a tree in
which each node is labeled with an element of (Vt ∪ Vn) in such a way
that:

(a) The root is labeled with the start symbol,

(b) the nodes of the frontier of the tree (i.e. the leaves of the tree) are
labeled with the symbols that form S, and

(c) each interior node is labeled with some non-terminal, N, such that
N→α ∈ P and α is the string of labels found on the node N’s
children.

4. A parse tree for our favorite string and grammar (the old xaxzyy example) is
shown in Figure 1.

5. There are grammars in which certain sentential forms have more than one
parse tree.

• < stmt > → if < expr > then < stmt >

| if < expr > then < stmt > else < stmt >

Ambiguity A grammar G is said to be ambiguous if there is some string in
L(G) with two distinct parse trees.

X

A

X

Z

Y

Y

< blob >

< glob > < blob >

< glob >

< glob > < blob >ε

ε

Figure 1: A parse tree for xaxzyy

4

