
CS 434 Meeting 3 — 2/9/06

Introduction
1. Phase 1 + Intermediate form handouts will be available online (and

outside my door?) by tomorrow.

2. Pick a language and a partner by tomorrow! Get started!

3. Brief tutorial on C programming shortly after class in TCL 104.

Outline

• Review symbol table organization

• Discuss contents of declaration descriptors

– Sneak in need for type descriptors

• Structure of semantic processing code

• Handling targeted method invocations

• Semantic processing subphase ordering

• Handling inheritance

– as a symbol table issue

– as a type checking issue

Block Structure & Symbol Table Organization (cont.)

1. Last time we discussed how to organize a symbol table that would
handle the scoping rules associated with block-structured programming
languages.

(a) We distinguished between four types of entries/structures that
are used to manage the symbol table:

Identifier descriptors -

• One per identifier.

• Created by scanner, used by later phases.

• Accessed through hash table managed by the scanner.

• Abstract syntax tree produced by the parser will use
pointers to identifier descriptors to represent identifiers
referenced in the program text.

Declaration descriptors -

• One per declaration.

• Created during semantic processing, used in later phases.

• Accessed through stacks of bindings associated with iden-
tifier descriptors and through pointers inserted in the ab-
stract syntax tree during semantic processing.

• After semantic processing the abstract syntax tree will
use pointers to declaration descriptors to represent iden-
tifiers referenced in the program text.

• Contain information about declared items like type, num-
ber of parameters, etc.

Binding descriptors • One per activation of declaration
(multiple activations can be created through inheritance).

• Created during semantic processing, irrelevant to later
phases

• Contain pointers to the associated declarations

• Contain pointers to lists of other bindings in scope

• Contain pointers to stacks of hidden bindings of ids

Scope descriptor • One per scope (classes and methods in
Woolite) per pass...

• Only used during semantic processing

• Hold pointers to surrounding scopes and list of bindings
in each scope

(b) We sketched out the process followed to create symbol table en-
tries and associate them with the appropriate nodes of the ab-
stract syntax tree.

i. The scanner creates a new identifier descriptor each time it
sees an identifier it has not previously seen. It uses a hash
table to keep track of the descriptors it has already created.

1



ii. The semantic processor creates a new scope descriptor each
time it begins processing the subtree of a class or method in
the abstract syntax tree. It keeps these descriptors in a stack.

iii. The semantic processor creates a declaration descriptor each
time it encounters a declaration.

iv. When the semantic processor wants to make an identifier ac-
cessible within a scope, it creates a binding for that declara-
tion and:

• pushes it onto the stack of bindings for that identifier,

• adds it to the list of bindings for the current scope.

v. When the semantic processor encounters a use of an identifier
in the tree, it will place a pointer to the current declaration
descriptor for that identifier (i.e. the one pointed to by the
binding on the top of the identifier’s stack of bindings) in that
tree node.

vi. When the semantic processor completes the processing of a
scope, it pops the binding stack for each identifier for which
there is a binding in the scope, then it pops the scope de-
scriptor itself off a stack of scopes.

Declaration Descriptor Contents

1. Declaration descriptors are really the most important element of the
symbol table. All the other elements are designed to provide an efficient
way to find the correct declaration descriptors.

2. There are a few common elements we will want to include in all decla-
ration descriptors:

• We will want each declaration descriptor to include a pointer to
the associated identifier descriptor (so that we can easily access
the string of character used as the identifier for compile-time error
message and symbolic debugging).

• We will want each declaration descriptor to include the nesting
depth at which the declaration occurred. When we generate code,
we will depend on this information.

3. Beyond this short list of common elements, the contents will vary from
one type of declaration to another:

Variables and formals • For each variable we will want to include
a description of its type. As a result, shortly, we will describe
yet another type of descriptor, the type descriptor.

• For code generation, we will eventually need information
about the offset to the variable within the heap object or
method activation record that contains it. On the WC34000,
all data objects require one word, so if we simply count vari-
able declarations and store the current count in each vari-
able’s descriptor, this will be sufficient. Note, however, that
for instance variables, this count must include all variable’s
in super classes.

Methods • We will want to store the method’s return type

• We will want to keep a pointer to a list of the declaration
descriptors for the method’s formals (this will be needed to
type check invocations of the method (among other things)).

• We will need a count of the number of local variable so that we
can tell how much memory to allocate for an frame/activation
record when the method is invoked.

• For code generation, we will build a table of pointers to the
code for each of the methods associated with a class. There-
fore, like variables, we will want to associate an offset with
each method. Again, as with variables, since all data val-
ues occupy 1 word on the WC34000, a simple count of this
method’s position within the list of methods associated with
the class will do the job. Note that this count will have to in-
clude methods defined in superclasses, but exclude methods
that simply override existing methods (since they will not get
a new slot in the table but instead reuse the old slot).

Classes • If the class is a subclass, we will want to know its super-
class.

• To allocate objects of a class, we will have to keep track of the
total space required for variables. Again, on the WC34000 all
variables will take one word. Therefore, the class declaration

2



descriptor is a good place to keep a count of how many vari-
ables we have processed.

• We will also want to keep the count of the number of distinct
method names associated with the class.

4. As mentioned, we now need to design yet another descriptor used to
hold information about the type of variables, expressions, etc. in Woo-
lite.

• Luckily, there aren’t too many choices. The only types are int,
declared classes, and arrays of the above. A type descriptor can
therefore simply be a pair including

– a pointer to the base type (a class declaration descriptor),
and

– a count of the number of dimensions (where 0 means the type
is not an array at all).

Semantic Processing Subphase Ordering

1. The fact that Woolite supports arbitrarily deep nesting of class defini-
tions and allows forward references to declarations (except in extends
clauses) makes it necessary to make several partial sub-passes over
the syntax tree and to think very carefully about what processing to
perform during each pass.

2. For example, consider the simple program shown in Figure 1. Even
though this program only includes three declarations at the top level,
it is enough to show that several “obvious” strategies for processing
the declarations won’t work.

• If you try processing the declarations in order, you get into trou-
ble immediately. When you go to process the declaration of
the variable x, you discover that it is supposed to be of type
Forward, but you haven’t processed the declaration of Forward
yet. You will want to put a pointer to the declaration descriptor
for Forward into the declaration descriptor for x, but the descrip-
tor for Forward won’t even exist yet.

class Program {
Forward x;

class Forward {
int counter;

void relay() {
x.action();

}

void action() {
counter = counter + 1;

}

void init() {
counter = 0;

}

int get() {
return counter;

}
}

int main() {
x = new Forward;

x.relay();

return x.get();

}
}

Figure 1: Coping with forward references

3



• If you try to process the declaration of Forward before x, however,
you will just run into a different problem. Forward references x in
its relay method. If there is no declaration descriptor or binding
for x, how can you resolve this reference to x?

• If you try the last possibility, processing the method main first,
you again encounter references to x before you have created its
declaration descriptor.

3. In addition to these (relatively simple) issues raised by forward refer-
ences, the ability to invoke a method on an object leads to a form of
vertical forward reference through which it appears to become neces-
sary to process inner scopes before outer scopes.

• Consider the program in Figure 2.

4. To deal with this, your semantic processing phase will make two passes
over the syntax tree.

• During the first pass, you will completely ignore method bodies.

• This pass will have two goals:

(a) to build (partial) declaration descriptors for each class, in-
stance variable, and method declaration in the program.

(b) to construct the hash table that maps class/method-name
pairs to method declaration descriptors

• During this first pass, you will construct scopes and place lots of
bindings, but you will discard all this information as your traversal
exits scopes.

• During the second pass, you will again traverse the tree, this time
processing method bodies.

• While you will have to rebuild all the bindings and scopes you
built in the first pass, you won’t have to revisits the parts of
the syntax tree examined during the first pass (class and method
headers, and instance variable declarations). Instead, you can
access the declaration descriptors you constructed from these el-
ements of the tree from other declaration descriptors and simply
create new bindings to refer to them.

class FourDeep {

class A {
int meth() {

B x;

x = new B;

return x.meth().meth();

}
}

class B {

class C {
int meth() {

return 4;

}
}

C meth () {
return new C;

}
}

int main() {
A y;

y = new A;

return y.meth();

}
}

Figure 2: Accessing methods from inner scopes

4


