CS 434 Meeting 25 — 5/11/06

The Reaching Definitions Problem

. To give you a sense that data flow analysis is a technique that can be
applied to many problems (not just identifying available expressions),
I’d like to consider one more problem related to common sub-expression
elimination.

. Recognizing which instances of a common sub-expression are redun-
dant isn’t enough to enable us to eliminate the redundant expressions.
We also have to make sure that the code generated for certain instances
of common sub-expressions leaves their values in places (temporaries)
from which they can be retrieved when redundant instances are en-
countered.

This can get tricky. In the example program, for instance, we somehow
have to arrange to use the same temporary to hold z/n when evaluated
before the loop and at the end of the loop.

. One simple solution to this difficulty would be to ensure that the code
generator used the same temporary for all instances of any expression
that appears repeatedly in a program.

This puts more constraints on the code generator than necessary. In
the example, there is no reason to put the result of the first instance
of y*z in the same location as the result of the instance used for the
while loop boolean. Only the value produced for the boolean is used
to eliminate evaluation of a redundant CSE.

. So, we would like to figure out which instances of a CSE are inter-
connected in the sense that their results have to be left in a common
location so that this location can be known when redundant instances
are encountered.

. Somewhat surprisingly, this turns into another data flow problem:

e In this problem, we will again be computing sets of expressions,
but this time instances of CSE’s will be considered distinct.

e We will only consider CSE’s with at least one redundant instance.

e Given a set of identical expressions appearing in the program,
we will say that an instance which is not redundant defines or
generates the value of the expression while a redundant instance
uses the value.

e Each “use” of a CSE depends on some subset of the instances
that “define” the value. For each use, we want to determine the
set of definitions on which it depends.

e Given a program point p, an expression « and some “definition”,
d, for a we say that the d “reaches” p if there is some path from
the start of the program to p that passes through d such that d
is the last definition of o on the path.

e The reaching definitions problem involves associating with each
program point p the set of definitions that reach p.

e We will again associate a KILL set with each variable and a GEN
set with each expression. This time KILL will contain the set of all
defining instances of all expressions referencing a given variable.

6. With all this said, the equations needed are almost identical to those

for AVAIL.

assignment statements Given an assignment of the form

<p1 > xXx:=exp <py >

REACHING(p2) = (REACHING (p1) + {GEN(exp)}—

{other instances of GEN(exp)} — KILL(z))

if statement Given an if statement of the form:

< po > if exp then < p; > stmit; < p3 >
else < po > stmiy < pg >
end < p5 >

REACHING(ps) = REACHING (ps) U REACHING (pa)

REACHING(p1) = REACHING(p2) = REACHING(po)—
{other instances of subexpressions of exp} + {GEN(exp) }



while loop Given a while loop of the form:

< po > while < p; > exp do
< p2 > stmt < p3 >
end < py >

REACHING(p1) = (REACHING(po) U REACHING (ps))

REACHING(p2) = REACHING(ps) = REACHING (p1)—
{other instances of subexpressions of exp} + {GEN(exp) }

7. There is one interesting difference between the equations for the reach-

ing definitions problem and those we wrote for the available expressions
problem. Reaching definitions uses set union while available expres-
sions uses intersection. This reflects the fact that determining avail-
able expressions requires "MUST” information. An expression must be
evaluated on all program paths to be available. Reaching definitions,
on the other hand, involves "MAY” information. A definition reaches
a program point if it may be the last instance evaluated on a path to
that program point.

Live “variable” analysis

. The last step in this process is to actually assign temporaries to the
groups of related instances found using the results of the “reaching
definitions” analysis.

2. The standard approach to this problem is based on graph-coloring:

e We build a graph with one node for each set of instances that
must be assigned a temporary locations. This graph is called the
interference graph.

e We connect two nodes with an edge if at some point in the pro-
gram the values of at least one instance occurring in each of the
sets of CSE instances associated with the nodes may be needed
in the future to avoid computing the value of a redundant CSE.

e We then assign colors (actually temporary location names) to the
nodes in such a way that no two connected nodes have the same
color.

. Coloring a graph is an NP-complete problem, but this doesn’t seem to

bother anyone. Using simple, greedy heuristics apparently works well
in progress.

. The issue I want you to think about, is how to we determine which

nodes in the graph to connect. That is, how to we decide if the value
produced by an instance of an expression may be used in the future.

. Once again, we can answer the problem using the data-flow analysis

approach.

. Recall from the discussion of Reaching definitions that once we have

solved the Available expressions problem we can identify instances of
CSE’s as uses and definitions.

. To figure out what values must be kept in temporaries at a particular

point we will solve a problem that might be called “reachable uses”
(but is actually called “live variables”). Basically, for each program
point we will determine the set of CSE instances that are a) uses and
b) reachable from the program point through an execution path that
does not include any other definition of the expression.

. Once again, it helps to have some auxiliary functions:

use(exp) will be the set of redundant CSE instances occurring as
sub-expressions of exp

kill(exp) will be the set of all redundant CSE instances that are tex-
tually equivalent to any non-redundant CSE instance appearing
as a sub-expression of exp

. Then, the equations for determining which instances are “LIVE” at a

particular point are:

assignment statements Given an assignment of the form

<p1r >x:=exp <py >

LIVE(p1) = LIVE(ps) + use(exp) — kill(exp)

if statement Given an if statement of the form:



< po > if exp then < p; > stmi; < p3 >
else < py > stmity < py >
end < ps >

It must be the case that:
LIVE(py) = LIVE(p1) + LIVE(p2) + use(exp)

LIV E(ps) = LIVE(py) = LIV E(ps)

while loop Given a while loop of the form:

< pg > while exp do
< p1 > stmt < pg >
end < p3 >

it must be the case that:
LIVE(py) = LIVE(p1) + LIVE(p3) + use(exp)

LIV E(pz) = LIV E(po)

10. The values needed by two expression instances that are live at a given
program point must not be assigned to the same temporaries (unless
the instances are instances of the same CSE).

So, the “liveness” information gives you what is needed to build an
interference graph and do temporary (i.e. register) allocation.

11. All the data-flow problems used to do redundant CSE elimination ob-
viously have a lot in common. There are some important differences:

e Two of the problems (available expressions and reaching defini-
tions) involved the flow of information in the same direction as
program execution would flow. These are called “forward” anal-
ysis problems. The Live variable problem, on the other hand, is
a “backward” analysis problem.

e Two of the problems collected information about what “may”
happen during execution (live variables and reaching definitions)
while one (available expressions) involved things that “must” hap-
pen.

These categories are used to partition data-flow analysis problems into
four groups (of which you have seen everything but a backwards-must
example).



