CS 434 Meeting 24 — 5/9/06

Global Common Sub-expression Elimination

1. Now, we want to consider how to do an even better job of eliminating

common sub-expressions. In particular, we want to handle control
structures. So, in a piece of (meaningless) code like:

X = y*z;

m := z/n;

while (y*z > 0) {
if (z/n>1) {

z = y*z;
} else {

z = y*z - 1;
}
m = z/n;

we would like to be smart enough to realize that the boolean of the
if is not a redundant common sub-expression (it will have been pre-
computed on the first iteration but not on later iterations), but that
the boolean of the if statement is redundant and that y*z is redundant
in the assignments within the if statement.

Note, as I mentioned earlier, “global” in compiler-optmization really
means one-procedure-at-a-time.

. The first step in the process of recognizing common sub-expressions
globally is (somewhat surprisingly) a simplification of the technique
for basic blocks.

We begin by scanning the code of the procedure being processed to
identify textually equivalent expressions. That is, we ignore whether
the actual values of the expressions we identify might be different be-
cause they reference variables whose values have changed.

This is not sufficient to identify CSE’s, but it serves as an important
first step.

3. Next, we need to determine whether the value of each distinct expres-

sion that appears in the program will be available whenever program
execution reaches each point in the program where the expression ap-
pears. This will be the case if we can be sure that another copy of the
expression will be evaluated on every path from the start of execution
to the evaluation of the expression in question and none of the vari-
ables used in the expression are changed after the last evaluation of a
copy of the expression.

. To determine which expressions are available at each program point,

we will associate a variable, AVAIL(p), with each program point. The
value of AVAIL(p) can be any subset of the distinct expressions found
in the procedure being processed. Our goal is to specify the equations
relating the values of the AVAIL(p) variables in such a way that a
solution to the equations will assign to each AVAIL(p) variable a con-
servative approximation to the set of expressions actually available at
that program point.

Representing such a set at compile-time can be fairly easy. Assum-
ing we have made a prepass over the procedure identifying textually
equivalent expressions, we can just use a counter to assign small integer
“name” to the expressions that appear in the procedure. Then, our
set of expressions can be represented as a set of small integers (using
a bit-vector).

. The notion of a “point in the program” will depend on how we represent

our code internally.

e Most “real” compilers translate the source program into assembly-
language-like statements. Segments of these statements that
involve no branches or branch targets are grouped into “basic
blocks”. The branches possible in the program are then repre-
sented by treating the basic blocks as the nodes of a graph called
the control flow graph in which each edge represents a possible
branch.

In this world, the program points that are interesting are usually
the beginnings and ends of basic blocks.

e To keep our discussion closer to the internal form you have been
using in your Woolite compilers, we can work with a notion of
program points defined in terms of the structure of our abstract
syntax trees.

Basically, we want to imagine a program point between any two
statements or boolean expressions used as conditions in the pro-
gram. The program we are considering as an example is shown
below with the program points identified with names like < p3 >.

< Pinit > X 1= y*%;
<pp> m:=z/n;
<p1> while <py > (y*z2>0){
<p3>if(z/n>1){
<ps>z:=y*2 <pg>
} else {
<ps>z:=y*'z-1<p;>
}

<pg>m:=z/n < py >
} <pio >

6. Given an expression « that appears at several places in a program,

to deterimine which (if any) of the evaluations of « are redundant we
need to examine how the flow of control through the program relates
each occurence of « to:

e other statements in the program where « is evaluated.

e other statements in the program where the values of variables

used in a may be changed.

We say that « is “generated” wherever it is evaluated and “killed” by
statements that may change variables used in the expression.

. If you are reading carefully, you will notice that I am trying to be very
careful about the use of the word “may”. In particular, above I said
“statements that may change” rather than “statements that change”.

When we see a statement like

x =

when doing program analysis, we know that a value will be assigned
to x, but we can’t be sure that it will be different from x’s old value.
So, assuming this statement changes x would be wrong. We can only
say it may change x. If it turns out it doesn’t, we may assume two
equivalent expressions are not CSE’s when they really are.

This is another example of a “conservative” approximation.

. One advantage of my approach (i.e. working with the abstract syntax

tree rather than with basic blocks in a control flow graph) is that
the specification of the equations that determine the values of the
AVAIL(p) variables is tied to the syntax of the language. For each
statement type, we give a rule for generating equations involving the
program points in and around the statement.

. To simplify the equations a bit, we will assume that for each variable,

x, in the procedure we pre-compute the set KILL(x) of expressions that
appear in the procedure and reference the value of x. This is the set
of expressions that would be killed by an assignment to x.

assignment statements Given an assignment of the form
<pp>xX=-exp<ps>

where p; is the program point just before the assignment and ps
is the point just after the assignment it is clear that

AV AIL(ps) = (AVAIL(p1) + {sub-expression of exp} — KILL(x))

if statement Given an if statement of the form:

<po>if (exp) {
< p1 > stmt; < p3 >
} else {
< pg > stmito < pg >
} <ps >

AV AIL(ps) = AV AIL(p3) N AV AIL(p4)
AV AIL(p1) = AVAIL(p2) = AVAIL(po) + {expressions appearing in exp}

10.

11.

12.

13.

14.

while loop Given a while loop of the form:

< po > while < p; > (exp) {
< pg > stmt < p3 >
} <psg>

AV AIL(p1) = (AVAIL(po) N AV AIL(ps))

AV AIL(p2) = AV AIL(ps) = AV AIL(p1) + {expressions appearing in exp}

We can solve the equations for AVAIL (and for many other similar
problems that arise in global optimization) by an iterative technique.

(a) Start by setting all the AV AIL(p) sets to the empty set.
(b) execute all the “equations” as assignment statements.

(c) If any of the AVAIL sets changed when all the equations were
executed, do it again.

I’d like to quickly show an example of how these techniques can be
applied to a simple sample program. I will use the program point
names included in the annotated version of our sample program shown
above.

There are only two expressions that appear more than once in this
example, y*z and z/n. So, we need only consider these expressions (it
would make sense to ignore expressions that only appear once in a real
compiler too).

The KILL sets associated with the variables that may be changed by
assignments in the fragment are KILL(x) =), KILL(z) = {y*z,2/n}
and KILL(m) = 0.

The equations generated are then:

AVAIL(py) =0+ {y*z} —0

AV AIL(p1) = AVAIL(py) + {z/n} — 0

AV AIL(ps) = AVAIL(p1) N AV AIL(po)

AV AIL(p3) = AVAIL(p1o) = AVAIL(p2) + {y * 2}
AV AIL(py) = AVAIL(ps) = AVAIL(ps) + {z/n}

15.

16.

AV AIL(pg) = AVAIL

(pe) pa) +{y*z} —{y*2,2/n}
AV AIL(p7) = AVAIL

(ps)

(po)

)
ps) +{yx 2z} —{y*zz2/n}
AV AIL(ps) = AV AIL(ps)
AV AIL(pg) = AV AIL(ps)

pe) N AV AIL(p7)
ps) + {Z/n} -0

A~~~

Repeatedly applying these equations as assignments we obtain:
Po P1 P2 P3, P10 P4 ,ps P6 ,p7 P8 | P9
0 0 0 0 0 0 0
{y*2} [{y*z2/n} 0 {y*z } {y*z } 0 {z/n
{y*2} | {y*zz/m} | {z/n} | {y*2,2/n} | {y*z,2/n} 0 {z/n
{v*2} [{y*zz/n} | {z/n} | {y*2,2/n} | {y*z,2/n} 0 {z/n

(to keep things readable, I have merged variables which clearly must
have equal values)

From these results, we can see that the evaluation of z/n in the boolean
of the if statement and the instances of y*z in the branches of the if
statement are redundant.

