CS 434 Meeting 22 — 5/2/06

Optimization techniques
1. Although “optimization” is the popular term for our next topic, it is
traditional to start by admitting that it is an inappropriate term.

e [t is theoretically hopeless to seek the optimal translation for a
given program.

e Optimization is really about code improvement.
2. Common forms of code improvement include:

Constant Folding Recognizing expressions whose values are
compile-time computable (even when program variables are
involved).

Common Sub-expression Elimination Avoiding the re-
evaluation of expressions whose values have not changed.
Can be done locally and globally.

Code motion Moving loop-invariant computations to the header of
a loop.

Reduction in Operator Strength Replacing expensive operations
(typically multiplications and divisions) with cheaper ones. Lo-
cally, this refers to using shifts instead of multiplies. Globally, it
involves recognizing induction variables in loops.

e For example, in the loop:
for i := 1 to 1000 do
begin

al[2*i] := ...
end

the multiplication “2*i” can be avoided by keeping a counter
that is incremented by 2 each time around the loop.
Copy Propagation If an assignment of the form x := y is found,
replacing instances of x with y after the assignment make make
it possible to eventually eliminate the assignment.

Dead Code Elimination Optimizations like copy propagation may
result in useless instructions (the assignments) that can be elimi-
nated.

Procedure inlining Replacing calls to procedures with copies of the
procedure body itself.

Register Allocation Try to avoid loads and stores of values to and
from memory by keeping them in registers.

Instruction Scheduling Ordering the instructions in the generated
code to deal with hardware timing issues (memory access delays,
branch delays, pipeline features).

. Optimizations can be classified according to the extend of code con-

sidered when they are applied.

Peephole Optimization Looks at just a short segment of output
machine code.

Local Optimization Looks at just one statement of high-level code.

Straight line code (or basic block) optimization Looks at se-
quences of instructions involving no branches (in or out).

Global Optimization Looks at an entire procedure (i.e. not really
global).

Interprocedural Optimization Really global.

Value Numbering

. Common subexpression elimination is an important optimization tech-

nique that we will use to explore several aspects of optimization meth-
ods.

. The goal of this optimization is to identify expressions that are guar-

anteed to produce identical values at runtime and arrange to only per-
form the associated computation once (when the first instance of the
expression is encountered).

. This involves tracking the flow of information through variables.

e In the code:



X = a + b;
y =c+d;
a=e;

zZ = a + b;
w=>b+y;

v=Db+c+ d;

The two occurences of “a+b” are not common subexpressions
because the value of a may change between the evaluation of the
first and second copies of the expression. On the other hand, the
last two expressions, “b 4+ y” and “b + ¢ 4+ d” can be identified
as common subexpressions even though they are not textually
identical because they are guaranteed to produce identical values.

4. We will begin by restricting our attention to CSE in straight line code.

Then, once the details are understood, we can see how to deal with
programs (like most real ones) that include control constructs.

. Eliminating common sub-expressions involves two mnon-trivial sub-
problems.

e [t isn’t enough to find expressions that look identical.

— Expressions that look identical may produce distinct results
if the values of variables referenced by the two expressions
change between their evaluations.

— Expressions that don’t look identical may produce identical
results:

x=1+y;

aly + 1] = al[x] + 1

e Even if we could proceed by simply looking for textually identical
expressions, it isn’t immediately clear how we could find them all
efficiently.

. One scheme that can be used to identify CSEs is called Value Num-
bering.

The goal of this scheme will be to assign a number to each expression
subtree in our program in such a way that two sub-trees will be assigned

the same number only when they are guaranteed to produce the same
value.

. We can get a sense of how the value numbering scheme works by con-

sidering a simpler scheme designed to solve only the second problem
described above: the problem of identifying textually identical expres-
sion efficiently.

The goal of this scheme will be to assign a number to each expression
subtree in our program in such a way that two sub-trees will be assigned
the same number exactly when they are textually identical.

8. We will define a recursive procedure to assign these number.

e The base cases are expression subtrees that are references to vari-
ables (let’s ignore records and arrays for a minute and assume
that all variables are simple Nident nodes), and constants.

e To handle variables, we will just keep a counter of how many
variables are declared in the program. Each time a variable is
declared, we will store this current value of this counter in its
declaration descriptor. When numbering expressions, we will use
this value if we encounter a variable. This ensures that two refer-
ences to the same variable will be assigned the same “expression
number” as desired.

e Constants are a bit harder. If “7” appears in two different places
in our program, we want to assign it the same “expression num-
ber” (which probably won’t be 7). We can do this by keeping a
hash table. Each time we encounter a constant, we can look it
up. If we don’t find it, we will pick a previously unused expres-
sion number, add an entry for the constant’s value and expression
number to the hash table, and assign this number to the constant
subtree.

e More complex expression (i.e. those using binary and unary
opeators) can be handled recursively with the same kind of help
from a hash table.

— First, recursively determine the expression numbers for the
operand(s) to the operator.



9.

10.

11.

— Look up a tuple composed of the operator used and the value
numbers for the operands in the hash table.

— If no match is found in the hash table, assign a previously
unused expression number and add an appropriate entry to
the hash table.

— if a match is found, associate the expression number found
with the expression sub-tree.

e This scheme implements a mapping from expression subtrees to
“expression numbers”. The implementation of the mapping is
partitioned into two components:

— For variables we use information stored in declaration de-
scriptors.

— For all other expression we depend on hash table lookups.

Unfortunately, the fact that two expressions are identical is neither
necessary or sufficient evidence that they will have the same value at
runtime. The problem is that the values associated with variables may
change. The solution is to change the “sequence numbers” we assign
to variables used as sub-expressions.

The goal is to ensure that two expression are assigned the same number
only if our compiler is certain that they will have the same value at
runtime.

We can accomplish this by changing the way we assign numbers to
expressions that reference variables.

e We will still keep each variable’s (current) value number in its dec-
laration descriptor. Unlike the scheme proposed above, however,
this value may change as our algorithm progresses.

e The first time we encounter a reference to a variable within a
block, we must assign the variable a previously unused value num-
ber (and store it in its declaration descriptor).

e When we encounter an assignment statement, we must change
the number associated with the variable that is the target of the

assignment. We don’t, however, assign brand new value num-
bers to the targets of assignments. Instead, when processing the
assignment
x:=E
we will assign E’s value number to x since future references to x
will produce the same value as E.
e The hash table will still be used as before.

e We will recognize that we have found an interesting CSE when a
match is found in the hash table.

12. This scheme will work fairly well for straight line code containing noth-
ing but references to simple, local variables. In the real world, unfor-
tunately, there are a few more complications to deal with.

e First, consider references to array elements (assuming simple ar-
rays of ints is bad enough!).

— In simple code like:
x = ali]l + z
y = k;
z = ali] + z

we certainly would expect to be able to identify ”ali] + z”
as a common sub-expression and eliminate the evaluation of
the second copy of the expression (just using the value of x
insead).

— Suppose instead that we have code that looks like:
x = ali]l + =z
alk] = k;
z = ali]l + =z

Even though the value of k is likely to be different from the
value of i, our value numbering scheme doesn’t provide a way
to know this for sure. It only tells us when two variables
definitely have the same value, not when they definitely are
different. So, we would have to be careful and assume that



the second copy of ”ali] + z” might produce a different value
from the first copy.



