
CS 434 Meeting 21 — 4/27/06

Building an LR(1) Machine
1. We start with plenty of new (but familiar) definitions.

LR(1) item Given a grammar G, we say that [N→β1.β2, a] is an
LR(1) item or LR(1) configuration for G if N→β1β2 is a produc-
tion in G and a ∈ (Vt ∪ ǫ). The symbol ‘a’ is called the lookahead.

Configuration Set We will refer to a set of LR(1) items as an LR(1)
configuration set.

Valid item Given a grammar G, we say that an LR(1) item
[N→β1.β2, a] is valid for γ ∈ (Vn ∪ Vt)

∗ if there is a rightmost
derivation

S
∗

=⇒
rm

αNω=⇒
rm

αβ1β2ω

such that αβ1 = γ and a ∈ First(ω).

2. Then, we need to extend the definitions which we used to define the
transition function for an LR(0) machine to account for the lookaheads
we have added to LR(1) items.

goto Given a set of LR(1) items for a grammar G, we define

goto(π, x) = {[N→β1x.β2, a] | [N→β1.xβ2, a] ∈ π}

closure Given a set π of LR(1) items for a grammar G with produc-
tions P, we define closure(π) to be the smallest set of LR(1) items
such that:

(a) closure(π) ⊇ π

(b) if [N1→β1.N2β2, a] ∈ closure(π) and N2→β3 ∈ P then, for
each b ∈ First(β2a), [N2→ . β3, b] ∈ closure(π)

3. With these definitions, it should be obvious, that the next step is to
define the LR(1) finite automaton for a grammar G consisting of:

• A set of states with one state for every subset of LR(1) items.

• An alphabet consisting of the terminals and non-terminals of G.

• A set of final states consisting of the set of all states except the
state corresponding to the empty set of LR(1) items.

• A transition function defined by:

δ(π, x) = closure(goto(π, x))

• The state closure([S′→.S$, ǫ]) as its initial state.

4. The notions of a kernel item and a reduce item transfer naturally from
LR(0) items to LR(1) items.

5. Note that the language accepted by the LR(1) FSM is the same as that
accepted by the LR(0) machine (i.e. the set of viable prefixes). The
extra states in the machine, however, include information that can be
used to make a better parser.

6. Consider what happens when we build the LR(1) machine for the non-
SLR(1) grammar considered earlier.

E → (L , E)
E → S
L → L , E
L → E
S → ident
S → (S)

7. A set of LR(1) items contains a conflict if it contains a reduce items
of the form [N→β1., x] and either another reduce item of the form
[M→β2., x] or a shift item of the form [M→α.xβ2, y].

8. We say that a grammar is LR(1) if the reachable states in its LR(1)
machine are conflict free.

9. Given an LR(1) grammar, its LR(1) parser, shifts in state π with input
x if state π contains a shift item of the form [N→α.xβ, a], reduces
using production N→β if state π contains a reduce item of the form
[N→β., x] and reports error otherwise.

A Word About LALR(1) Parsing

1

1. We’ve got a problem...

• The machines that result from the LR(1) construction tend to be
too large to use in practice.

• The SLR(1) technique is too weak (i.e. there are too many gram-
mars that could be parsed deterministically using LR(1) tech-
niques whose LR(0) machines still have SLR(1) conflicts).

LALR parsing attempts to find a happy medium.

2. Given a set of LR(1) items, we can obtain a set of LR(0) items by
dropping the lookahead from each LR(1) item. We call this set the
core of the original set of LR(1) items.

• As an example, the core of the state in the LR(1) machine reached
upon reading “(S” is just the state of the LR(0) machine reached
on the same input.

3. The core of each state in the LR(1) machine will correspond to some
state in the LR(0) machine. (Many states in the LR(1) machine may
have the same state of the LR(0) machine as their core.)

4. Using these facts, for each state in the original LR(0) machine for a
grammar we can define a corresponding set of LR(1) items. For an
LR(0) state π, we will use the set of LR(1) items defined by

{[N→β1.β2, x]| for some π′ in the LR(1) machine,
[N→β1.β2, x] ∈ π′ & π = core(π′)}

S → .id = A !
id

S → id .= A !

=

S → id = .A !
A → .id = A

A → .E
E → .id

E → .(id !)
E → .(A)

A
S → id = A .!

!

S → id = A ! .

idA → id .= A
E → id .

=

A → id = .A
A → .id = A

A → .E
E → .id

E → .(id !)
E → .(A)

E

A → E .

E

(

E → (.id !)
E → (.A)

A → .id = A
A → .E
E → .id

E → .(id !)
E → .(A)

(

(

E A
E → (A .)

)

E → (A) .

id

A → id .= A
E → (id .!)

E → id .

!

E → (id ! .)

)

E → (id !) .

=

.

A

A → id = A .

id

0 1

2

3

4

5

6

7

8

9

10

11

12

14

15

2

5. The LALR(1) machine for a grammar is formed by replacing each of
the sets of LR(0) items associated with the states of the LR(0) machine
with sets of LR(1) items in the way just described.

6. Consider how this works on the grammar:

S → id = A !
A → id = A

| E
E → id

| (id !)
| (A)

7. The mess on the preceding page is the LR(0) machine for the grammar.
Note that two states (8 and 9) contain LR(0) conflicts and that one
of them (9) is also an SLR(1) conflict since and E can be followed by
either an “)” or an exclamation point.

8. The even bigger mess on the next page is (hopefully) the
LR(1) machine for the grammar. The following handy guide
lists the states of the LR(0) machine and the states of the
LR(1) machine to which they correspond.

0 0

1 1

2 2

3 3

4 4, 15

5 5, 13

6 6, 12

7 7

8 8, 23

9 9, 18

10 10, 16

11 11, 17

12 14, 22

13 20, 21

14 24, 25

S → .id = A ! , ǫ

id
S → id .= A ! , ǫ

=

S → id = .A ! , ǫ

A → .id = A , !
A → .E , !
E → .id , !

E → .(id !) , !
E → .(A) , !

A
S → id = A .! , ǫ

!

S → id = A ! ., ǫ

idA → id .= A , !
E → id ., !

=

A → id = .A , !
A → .id = A , !

A → .E , !
E → .id , !

E → .(id !) , !
E → .(A) , !

E
A → E ., !

E

(

E → (.id !) , !
E → (.A) , !

A → .id = A ,)
A → .E ,)
E → .id ,)

E → .(id !) ,)
E → .(A) ,)

(

(

E → (.id !) ,)
E → (.A) ,)

A → .id = A ,)
A → .E ,)
E → .id ,)

E → .(id !) ,)
E → .(A) ,)

(

E
A → E .,)

E

A
E → (A .) , !

)

E → (A) ., !

id

A → id .= A ,)
E → (id .!) , !

E → id .,)

!

E → (id ! .) , !

)

E → (id !) ., !

=

A → id = .A ,)
A → .id = A ,)

A → .E ,)
E → .id ,)

E → .(id !) ,)
E → .(A) ,)

(
E

id

A → id .= A ,)
E → id .,)

=

A

A → id = A .,)

A

E → (A .) ,)

)

E → (A) .,)

id

A → id .= A ,)
E → (id .!) ,)

E → id .,)

=

!

E → (id ! .) ,)
)

E → (id !) .,)

A

A → id = A ., !

id

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

3

S → .id = A ! , ǫ

id
S → id .= A ! , ǫ

=

S → id = .A ! , ǫ

A → .id = A , !
A → .E , !
E → .id , !

E → .(id !) , !
E → .(A) , !

A
S → id = A .! , ǫ

!

S → id = A ! ., ǫ

id
A → id .= A, !

E → id ., !
A → id .= A,)

E → id .,)

=

A → id = .A , !
A → .id = A , !

A → .E , !
E → .id , !

E → .(id !) , !
E → .(A) , !

A → id = .A ,)
A → .id = A ,)

A → .E ,)
E → .id ,)

E → .(id !) ,)
E → .(A) ,)

E

A → E ., !
A → E .,)

E

(

E → (.id !) , !
E → (.A) , !

E → (.id !) ,)
E → (.A) ,)

A → .id = A ,)
A → .E ,)
E → .id ,)

E → .(id !) ,)
E → .(A) ,)

(

(

E

A E → (A .) , !
E → (A .) ,)

)

E → (A) ., !
E → (A) .,)

id

A → id .= A ,)
E → (id .!) , !
E → (id .!) ,)

E → id .,)

!

E → (id ! .) , !
E → (id ! .) ,)

)

E → (id !) ., !
E → (id !) .,)

=

A

A → id = A ., !
A → id = A .,)

id

0 1

2

3

4

5

6

7

8

9

10

11

12

1314

9. Finally, here we see the LALR(1) machine for this grammar. The states
are numbered to match the numbering of the states from the LR(0)
machine. Each state contains the union of the LR(1) items found in
the LR(1) states whose core is equivalent to the corresponding LR(0)
state.

Note, there are no LALR(1) conflicts.

Optimization techniques

1. Although “optimization” is the popular term for our next topic, it is
traditional to start by admitting that it is an inappropriate term.

• It is theoretically hopeless to seek the optimal translation for a
given program.

• Optimization is really about code improvement.

2. Common forms of code improvement include:

Constant Folding Recognizing expressions whose values are
compile-time computable (even when program variables are
involved).

Common Sub-expression Elimination Avoiding the re-
evaluation of expressions whose values have not changed.
Can be done locally and globally.

Code motion Moving loop-invariant computations to the header of
a loop.

Reduction in Operator Strength Replacing expensive operations
(typically multiplications and divisions) with cheaper ones. Lo-
cally, this refers to using shifts instead of multiplies. Globally, it
involves recognizing induction variables in loops.

• For example, in the loop:

for i := 1 to 1000 do

begin

. . .

a[2*i] := ...

4

end

the multiplication “2*i” can be avoided by keeping a counter
that is incremented by 2 each time around the loop.

Copy Propagation If an assignment of the form x := y is found,
replacing instances of x with y after the assignment make make
it possible to eventually eliminate the assignment.

Dead Code Elimination Optimizations like copy propagation may
result in useless instructions (the assignments) that can be elimi-
nated.

Procedure inlining Replacing calls to procedures with copies of the
procedure body itself.

Register Allocation Try to avoid loads and stores of values to and
from memory by keeping them in registers.

Instruction Scheduling Ordering the instructions in the generated
code to deal with hardware timing issues (memory access delays,
branch delays, pipeline features).

3. Optimizations can be classified according to the extend of code con-
sidered when they are applied.

Peephole Optimization Looks at just a short segment of output
machine code.

Local Optimization Looks at just one statement of high-level code.

Straight line code (or basic block) optimization Looks at se-
quences of instructions involving no branches (in or out).

Global Optimization Looks at an entire procedure (i.e. not really
global).

Interprocedural Optimization Really global.

5

