
CS 434 Meeting 20 — 4/25/06

SLR(1) parsing
1. Suppose that we find that after reading some prefix ω1 of an input

ω1xω2 we end up in a state that contains a reduce item [N→β.] which
conflicts with some other item.

• If we decide to reduce using the production in this item, we are
basically assuming that

S
∗

=⇒
rm

αNxω2
=⇒
rm

αβxω2

∗

=⇒
rm

ω1xω2

• That is, we are assuming that there is some sentential form in
which an x can follow an N.

2. We can give the set of symbols that might appear after a non-terminal
a name:

Follow(N) = {x ∈ Vt | A
∗

=⇒αNxβ} ∪ {ǫ if S
∗

=⇒αN}

3. Given the notion of the “follow” set, we can illustrate the use of look-
ahead in LR parsing, by considering the simplest form of look-ahead
LR parsing — SLR(1) parsing (that’s S for simple).

4. In general, we will say that a set of LR(0) items contains an SLR(1)
conflict if either:

(a) It contains two reduce items [N→β1.] and [M→β2.] such that the
intersection of Follow(N) and Follow(M) is non-empty, or

(b) It contains a reduce item [N→β1.] and a shift item [M→β2.xβ2]
such that x ∈ Follow(N).

5. If the LR(0) machine for a grammar G contains no states with SLR(1)
conflicts we say that G is an SLR(1) grammar.

6. An SLR(1) parser for an SLR(1) grammar G behaves as follows in state
π when the next input symbol is “x”:

• reduce using production N→β if [N→β .] ∈ π, and x ∈
Follow(N).

• shift in next input if π contains one or more items of the form [
N→α.xβ].

• error otherwise.

Computing Follow(N)

1. If a grammar contains the rule N→α1MRα2, then Follow(M) must
contain the first symbols that might appear in strings derived from R.
In addition, if R derives the empty string, then the first symbols that
might be derived from α2 will be in Follow(M).

2. The computation of the Follow set will depend on several other sub-
computations.

nullable Given a grammar G, we say that a non-terminal N is nullable
if N

∗

=⇒ǫ.

first set Given a grammar G and α ∈ (Vn ∪Vt)
∗ we define First(α) to

be the set of terminals that might appear as the first symbol in a
string derived from α. First(α) will include ǫ if α

∗

=⇒ǫ. Thus,

First(α) = {a ∈ Vt | α
∗

=⇒aβ, for someβ ∈ (Vn∪Vt)
∗}∪{ǫ if α

∗

=⇒ǫ}

3. The set of nullable non-terminals can be computed by the following
algorithm:

(a) Set “nullable” equal to the set of non-terminals appearing on the
left side of productions of the form N→ǫ.

(b) Until doing so adds no new non-terminals to “nullable”, examine
each production in the grammar adding to “nullable” all left-
hand-sides of productions whose right-hand-side consist entirely
of symbols in “nullable”.

4. Given that we have computed the set of nullable non-terminal, we can
compute First for each terminal and non-terminal using a “run until
nothing changes” algorithm:

• We use a table called ‘FirstSet’ with one entry for each terminal
and non-terminal. Throughout the algorithm, for any x ∈ (Vt ∪
Vn)

First(x) ⊇ FirstSet[x]

1

• FirstSet will be initialized as follows.

(a) Set FirstSet[x] to {ǫ} for all nullable non-terminals and to {}
for all other non-terminals.

(b) Set FirstSet[x] equal to {x} for all terminals.

(c) For each production of the form N→tβ add t to FirstSet[N].

• For each production of the form N→β, write β as β = αβ′ where
α is a string of nullable non-terminals, and β′ is either the ǫ or
a string of terminals and non-terminals beginning with a non-
nullable symbol we will call M.

• The approximations for the First sets stored in the FirstSet ta-
ble are then improved until they become exact by repeating the
following process until no further changes occur.

– For each production N→αβ′

(a) For each x ∈ α, add (FirstSet[x] − ǫ) to FirstSet[N].

(b) If β′ = ǫ then add ǫ to FirstSet[N] otherwise add
(FirstSet[M] − ǫ) to FirstSet[N].

5. Consider how to determine nullable, First and Follow for the grammar:

S → A B C
A → a | CB
B → C | A d | ǫ

C → f | ǫ

• All the non-terminals are nullable:

– B and C are directly nullable.

– The production A→BC, then implies A is nullable.

– Then, the production S→ABC implies S is nullable.

• The productions break down as:

α β

S → A B C
A → a
A → CB
B → C
B → A d
B → ǫ

C → f
C → ǫ

• The FirstSet values start out as shown in the table be-
low and can be refined by iterating over the production table.

S A B C a d f

{ ǫ } { ǫ, a } { ǫ } { ǫ, f } { a } { d } { f }

{ } { } { } { } { a } { d } { f }

{ } { } { } { } { a } { d } { f }

{ } { } { } { } { a } { d } { f }

6. The computation of Follow(N) depends of the First sets defined earlier.
If

M→αNβ

then Follow(N) must contains First(β) . If β is nullable, then Fol-
low(N) must also contain Follow(M). These observations are enough
to give us an approximation algorithm for computing Follow. See the
books on reserve for details.

LR(1) Parsing

1. Simply using Follow sets to interpret look ahead symbols may give less
information than is really available.

• Consider the grammar:

E → (L , E)
E → S
L → L , E
L → E
S → ident
S → (S)

2

The state reached on input ‘(S’ contains an SLR(1) conflict but
1 symbol look ahead is enough to allow us to parse.

To see why, build the LR(0) machine. The conflict is between the
items [S→(S.)] and [E→S.] and “)” is clearly in the Follow set
of E. However, if one reduces using the production in the reduce
item, one would quickly ends up in a state where you further
reduce the E to an L. Then, you end up in a state where the only
possible action is to shift in a comma. So, if the next input is not
a comma, reducing by E→S is a dead end.

2. LR(1) parsing is a generalization of LR(0) parsing that keeps track of
both what points in what productions we might be up to and what
might follow the rhs’s of the productions we are working on.

3. We start with plenty of new (but familiar) definitions.

LR(1) item Given a grammar G, we say that [N→β1.β2, a] is an
LR(1) item or LR(1) configuration for G if N→β1β2 is a produc-
tion in G and a ∈ (Vt ∪ ǫ). The symbol ‘a’ is called the lookahead.

Configuration Set We will refer to a set of LR(1) items as an LR(1)
configuration set.

Valid item Given a grammar G, we say that an LR(1) item
[N→β1.β2, a] is valid for γ ∈ (Vn ∪ Vt)

∗ if there is a rightmost
derivation

S
∗

=⇒
rm

αNω=⇒
rm

αβ1β2ω

such that αβ1 = γ and a ∈ First(ω).

Building an LR(1) Machine

1. First, we need to extend the definitions which we used to define the
transition function for an LR(0) machine to account for the lookaheads
we have added to LR(1) items.

goto Given a set of LR(1) items for a grammar G, we define

goto(π, x) = {[N→β1x.β2, a] | [N→β1.xβ2, a] ∈ π}

closure Given a set π of LR(1) items for a grammar G with produc-
tions P, we define closure(π) to be the smallest set of LR(1) items
such that:

(a) closure(π) ⊇ π

(b) if [N1→β1.N2β2, a] ∈ closure(π) and N2→β3 ∈ P then, for
each b ∈ First(β2a), [N2→ . β3, b] ∈ closure(π)

2. With these definitions, it should be obvious, that the next step is to
define the LR(1) finite automaton for a grammar G consisting of:

• A set of states with one state for every subset of LR(1) items.

• An alphabet consisting of the terminals and non-terminals of G.

• A set of final states consisting of the set of all states except the
state corresponding to the empty set of LR(1) items.

• A transition function defined by:

δ(π, x) = closure(goto(π, x))

• The state closure([S′→.S$, ǫ]) as its initial state.

3. The notions of a kernel item and a reduce item transfer naturally from
LR(0) items to LR(1) items.

4. Note that the language accepted by the LR(1) FSM is the same as that
accepted by the LR(0) machine (i.e. the set of viable prefixes). The
extra states in the machine, however, include information that can be
used to make a better parser.

5. Consider what happens when we build the LR(1) machine for the non-
SLR(1) grammar considered earlier.

E → (L , E)
E → S
L → L , E
L → E
S → ident
S → (S)

3

6. A set of LR(1) items contains a conflict if it contains a reduce items
of the form [N→β1., x] and either another reduce item of the form
[M→β2., x] or a shift item of the form [M→α.xβ2, y].

7. We say that a grammar is LR(1) if the reachable states in its LR(1)
machine are conflict free.

8. Given an LR(1) grammar, its LR(1) parser, shifts in state π with input
x if state π contains a shift item of the form [N→α.xβ, a], reduces
using production N→β if state π contains a reduce item of the form
[N→β., x] and reports error otherwise.

4

