
CS 434 Meeting 2 — 2/7/06

Introduction
1. First phase of project will be assigned on Thursday.

2. Shall we schedule a C ”lab” sometime.

Understanding Block Structure

1. First, recall the rules of nested block structure.

• A scope is a subsection of a program’s text typically corresponding to a
procedure/function/method/class or a block of statements.

• An identifier can have only one definition in a given scope.

• An identifier can be used in a scope as long as it is either defined in the
scope or in a containing scope. (Note: Sometimes forward references are
not allowed.)

• Any use of an identifier refers to the declarations of the identifier occur-
ring in the smallest enclosing scope.

2. A very helpful way to understand such scope rules is to recognize that the
nesting is just an alternate way to represent a tree structure:

• The tree shown in Figure 1

Figure 1: A simple tree structure

can be encoded by the nested diagram shown in Figure 2, or by the
textual nesting:

Figure 2: An alternate representation of a tree structure

begin A

begin B

begin E

end E

begin F

end F

end B

begin C

end C

begin D

begin G

end G

begin H

end H

end D

end A

3. For example, consider the interpretation of identifier references in the program
whose skeleton is shown in Figure 5.

4. Within each node of this tree, we have written the names of the identifiers
declared within the scope that corresponds to the tree node.

1

public class NestingExample {
int x; int y;

class One {
Two y; int z;

class In1 {
One y;

}

void m1() { int y; y = 1; x = y; }
}

class Two {
Three x;

void m2() x.m3();

}

class Three {
Two x; One y;

class In3 extends One {
void mIn3() {

y.m2();

m1();

}
}

void m3() { /* ... */ }
}

}

Figure 3: A class definition skeleton illustrating nested declarations

Figure 4: Tree of scopes corresponding to Figure 3

2

5. If an identifier is referenced within a given scope in the program, the correct
definition can be found by sequentially searching the scopes on the path in
this tree from the node for the scope to the root of the tree.

6. Note the interesting contents of the scope for the class In3. Because this
class extends the class One. It includes new bindings for the names y, z, m1,
and In1. These names are not redeclared. Rather, new bindings to existing
declarations are created and added to the scope.

• To appreciate the difference between adding bindings and new declara-
tions, consider what happens if the method m1 is invoked from within
In3. In particular, when that method references x, it must use the bind-
ing for x in the scope of the declaration of m1 (i.e. the declaration of x
in the outer class) rather than the binding of x within In3.

Symbol Tables vs. Symbol Table Organization

1. The organization of most compiler symbol tables is fairly complex as a result
of the need to support the scope rules associated with block structure. The
standard approach to explaining symbol table organization, however, adds
additional complexity by failing to properly distinguish the role of the scanner
in building the symbol table from that of the semantic analysis routines in
completing it.

2. Many compiler texts describe the symbol table as a dictionary, typically im-
plemented using a hash table or a search tree.

• In order to handle block structure, such texts proposed maintaining one
hash table for every node in the scope tree, and searching them sequen-
tially.

3. In my (somewhat odd) view, the symbol table is just a collection of
records/structures in which the attributes of identifiers are stored. The hash
table (or whatever else is used) is simply a mechanism that enables the scanner
to associate symbol table entries with the character string form of identifiers
it processes.

4. Once the program has been transformed into a syntax tree, the semantic
analyzer has direct access to symbol table entries through pointers stored in
the tree. The hash table used by the scanner is not needed. Thus, it seems
wrong to me to talk about the hash table as if it were the symbol table.

5. The key to this approach is to start by thinking about the abstract entities
that need to be represented in the symbol table.

• Obviously, there are identifiers. We would like to have a single ob-
ject/structure that represents all occurrences of a given identifier. That
is, within the syntax tree, we would like all occurrences of a given identi-
fier to be represented by pointers to the same object/structure. We will
call these structures identifier descriptors.

This is easy to accomplish using a simple hash table maintained by the
lexical analyzer.

• Next, there are declarations. Again, we want to have a single structure
that describes each declaration found in the program. We will call these
structures declaration descriptors. If this is all we worry about (i.e. we
don’t worry about which declaration goes with which reference to a given
identifier), this is quite easy too. When the semantic processing routines
in our compiler encounter a declaration, they just need to allocate and
initialize a new structure describing the declaration.

• Finally, there are associations or bindings between identifiers and decla-
rations. The identifiers and declarations don’t change as we enter and
leave scopes, but the bindings do. If we know which bindings are active
in a given scope, we can figure out which declaration goes with a given
identifier at any points.

Therefore, the third type of thing we should explicitly represent as a
structure or object in our compiler is a binding between an identifier and
a declarations. If we do this, then we will have a convenient way to keep
track of things like the set of all bindings made in a given scope or the
stack of bindings associated with a given identifier.

6. The syntax tree produced by the syntactic analyzer represents each identifier
occurrence by a pointer to the corresponding identifier descriptor. Unfortu-
nately, when processing the syntax tree to do code generation or type checking,
it would be much more useful if each identifier in the program was represented
in the tree by a pointer to the appropriate declaration descriptor.

As a result, the first step in semantic processing will be to process the syntax
tree creating the required declaration descriptors and replacing/augmenting
the pointers to identifier descriptors in the tree by pointers to the appropriate
declaration descriptors. We will call these processes declaration processing

and identifier reference resolution.

7. To produce an efficient compiler, we want to avoid algorithms that require
either time or space that is more than linear in the size of the program when-
ever possible. This implies that we need way to find the correct declaration
descriptor for each identifier in our syntax tree in constant time!

3

8. A way we can arrange for such constant time processing is to ensure that when
we encounter a reference to an identifier in the tree, the identifier descriptor
for the identifier already points to a binding descriptor that in turn points to
the the correct (i.e. current) declaration of that identifier.

• This means we will have to do some (hopefully small) amount of work ev-
ery time the “correct” declaration associated with any identifer changes.

• Fortunately, the “correct” declaration/identifer associations only change
when we enter and leave scopes.

– Note: “Enter” and “leave” here refer to compile time traversal of
the syntax tree not to run-time calls and returns.

9. As the semantic processing routines traverse the syntax tree, the bindings
associated with a given identifier behave in a stack-like manner.

• If a declaration of X is included in the block which we are begining
to traverse, a binding between the identifier and the declaration found
in that scope become the current binding for the identifier. That is, a
binding descriptor referring to the new declaration gets pushed on top of
the stack.

• When a block that contains a declaration of X is exited, the binding that
had been ‘current’ for X before the block was entered should become
current again. That is, the newest binding on the identifier’s stack is
popped.

10. The stack of bindings for a given identifier can be kept as a linked list with
the head pointer stored in the associated identifier descriptor.

11. If such stacks are maintained, it is easy to replace/augment each identifier
descriptor pointer encountered while traversing the syntax tree.

• When an identifier descriptor is found in the syntax tree, simply follow
the stack head pointer stored in that identifier descriptor to find the top
of the binding stack. Access the current declaration descriptor through
the binding and store a pointer to that declaration descriptor in the
syntax tree.

• If a use of an identifier is encountered at a point where the binding stack
is empty, the use should be reported as a reference to an undefined name.

12. It is easy to push the necessary binding descriptor onto the appropriate iden-
tifier descriptor’s stack for each identifier declared within a scope.

• The subtree of the AST representing the declaration will contain a
pointer to the identifier descriptor.

13. Semantic processing of the end of a scope requires removal of all declaration
descriptors on the current scope’s list from the stacks of declaration descriptors
attached to the identifier descriptors involved.

• To make this efficient one can keep a list of all the bindings that were
created in the current block.

• Note: One actually needs to keep a stack of such lists (one list for each
open scope). So, the semantic processing routines will need to push an
empty list onto this stack of lists when a new scope is entered. We will
call this the open scope stack.

• We also need to make each binding or declaration descriptor hold a
pointer back to its identifier descriptor.

14. To summarize the process suggested above (and to make it more algorithm-
like:

(a) The scanner creates a new identifier descriptor each time it sees an iden-
tifier it has not previously seen. It uses a hash table to keep track of the
descriptors it has already created.

(b) The semantic processor creates a declaration descriptor each time it en-
counters a declaration.

(c) The semantic processor maintains a stack of binding descriptors for each
identifier.

• Each identifier’s stack is pointed to by the identifier’s descriptor.

• The stack contains a binding descriptor for each declaration of the
identifier associated with a scope that is currently ”open” (i.e. that
the semantic processing routines have started to work on but not yet
completely finished).

• The entry for the innermost scope is kept at the top of the stack.
The outermost scope is at the bottom of the stack.

(d) The semantic processor maintains a list of the bindings encountered in
each open scope. We will call these lists scope binding lists. These lists
are then organized in a stack call the open scope stack with the scope
declaration list for the innermost scope at the top of the stack.

(e) To process a scope (i.e. class, procedure, main program, etc.) the se-
mantic processor

• Pushes an empty binding list on the open scope stack.

4

• For each declaration, creates a declaration descriptor, pushes a bind-
ing referring to this declaration onto the identifier’s binding stack,
and adds it to the topmost scope binding list on the open scope
stack.

• Scans the contents (statement, expressions, etc.) of the block re-
placing each pointer to an identifier descriptor by a pointer to the
declaration descriptor that is currently pointed to by the binding on
the top of that identifier descriptor’s active binding stack.

• Closes the scope by popping a binding descriptor from the stack of
every identifier descriptor on the topmost scope binding list and then
pops this list off the open scope stack.

15. To understand how this all works together, consider the program shown in
Figure 5.

class Program {
int W;
int X;
class A {

int W;
int Y;
int Z;

void B() { int X ; . . . }
void C() { int X; int Y ; . . . }
. . .

} // end of A

void D() { int Z ; . . . }
}

Figure 5: A class definition skeleton illustrating nested declarations

• The diagram in figure 6 shows the state of the symbol table while pro-
cessing the body of the method C in the program whose skeleton is shown
in figure 5. (The symbol table nodes for method and class names have
been omited from this diagram but would be present in the actual symbol
table.)

de

sc
ri

pt
or

s

 d

es
cr

ip
to

rs

bi
nd

in
g

de
cl

ar
at

io
n

A
ZZ

A
Z

C
Y

Y
A

X
C

m
ai

n
X

W
A

W
m

ai
n

de
sc

ri
pt

or
s

m a i nAC

op
en

 s
co

pe
st

ac
k

id
en

tif
ie

r

W
A

W
m

ai
n

W

m
ai

n
XX

C

X

C
Y Y

A

Y

Figure 6: Symbol Table Organization

5

