
CS 434 Meeting 19 — 4/20/06

Garbage Collection (cont.)
1. Mark-scan collectors don’t work very well when objects of a wide va-

riety of sizes need to be allocated.

2. An alternative approach to garbage collection is based on copying.
To implemnent this approach we divide the heap into two areas and
switch back and forth between them by garbage collecting when the
active area fills up. This seems wasteful (we only use half the memory
available at any time). It has several advantages, including that the
work performed depends only on the amount of useful data around,
not on the amount of garbage.

3. The pseudo-code for this version of “findthings” (which is better called
“movethings”) looks like:

movethings(heapobject ** root)

{
if (*root != NULL) {

if (!(*root)->alreadymoved) {
move the record **root to new heap

(*root)->forwardingaddress = newposition

(*root)->alreadymoved = TRUE

for all ‘‘child’’ren of copied root do

movethings(& child)

}
*root = pointer to new copy of record

}
}

4. So, to make this all work, we have to plan the layout of data in memory
in a way that will let us:

• Find all the roots.

• Find all the pointers within a record once we find the record in
the heap.

• Avoid copying things twice.

• Know where each object has been moved to

• Update all pointers during copying.

5. The simplest approach to most of these requirement is to “tag” each ob-
ject and/or pointer with a “descriptor” (sometimes one bit is enough)
that will tell the garbage collector what it is.

• To find all the pointers in a record, we at least need to know how
big the record is. So, the first “descriptor” we might use is a
length field at the start of each record in the heap.

• Because a record may contain both pointers and non-pointer val-
ues, we either need a descriptor for the whole record or descriptors
for each element.

– This can be done by multiplying all integer values by 2 (so
their low order bits will be 0) and making sure that all records
are allocated on odd addresses (so that pointers will have 1’s
in their low order bits).

• We also need some way to tag a record that has already been
moved. Since its contents are not important after it has been
moved, there are plenty of ways to handle this (set its length to
0?).

6. To update pointers that point to objects that have already been moved,
we need to store the new address of the object somewhere in the space
that held the original object (the word after the length?). This is called
a forwarding pointer.

7. SO, all that’s left is to find all the roots. Most of them (all of them if
we do it right) are on the stack of activation records. To find them, we
write a loop to look at all the words in the stack and call movethings
with any value that we are sure is a heap pointer.

8. The stack contains parameters and locals (which are all tagged pointers
and integers) and return points and return frame pointers (stored by
JSR and LINK instructions).

We can easily tell if the “tagged” values are pointers (or not). The
return information may look like pointers (i.e. may be odd), but they

1

won’t point to the heap, so a simple test against the heap boundaries
will detect them.

9. To make sure that roots aren’t hiding in registers, we have to make sure
our code stores all registers that hold pointers onto the stack before
any call (including to the garbage collector).

10. Finally, if we really are garbage collecting because we ran out of mem-
ory we don’t want to run a recursive algorithm that might require lots
of stack space. This can be fixed by switching from a depth first traver-
sal of the findable data in the heap to a breadth first version using the
new copy of the heap as our worklist/queue.

• The tail of the contents of the new heap will be viewed as a queue
with:

– The head pointer equal to the first moved structure whose
internal pointers have not been processed.

– The tail pointer equal to the last structure moved.

SLR(1) parsing

1. Consider the grammar

< S > → a < S > b < S > | ǫ

2. If we build the LR(0) machine for this grammar, we discover that it
is not an LR(0) grammar because several states contain shift/reduce
conflicts.

• The initial state is composed of the items:

[< S’ > → . < S > $]
[< S > → . a < S > b < S >]
[< S > → . ǫ]

• Starting from the initial state on input “a” we reach the the state:

[< S > → a . < S > b < S >]
[< S > → . a < S > b < S >]
[< S > → ǫ .]

We can use this machine anyway, if we are willing to look ahead a bit.

• In all the sentential forms you can generate from the grammar an
“a” will never directly follows and S.

• As a result, in either of the states shown, choosing to reduce when
the next input is an “a” would definitely lead to a dead end.

3. In general, suppose that we find that after reading some prefix ω1 of an
input ω1xω2 we end up in a state that contains a reduce item [N→β.]
which conflicts with some other item.

• If we decide to reduce using the production in this item, we are
basically assuming that

S
∗

=⇒
rm

αNxω2
=⇒
rm

αβxω2

∗

=⇒
rm

ω1xω2

• That is, we are assuming that there is some sentential form in
which an x can follow an N.

4. We can give the set of symbols that might appear after a non-terminal
a name:

Follow(N) = {x ∈ Vt | A
∗

=⇒αNxβ} ∪ {ǫ if S
∗

=⇒αN}

5. Given the notion of the “follow” set, we can illustrate the use of look-
ahead in LR parsing, by considering the simplest form of look-ahead
LR parsing — SLR(1) parsing (that’s S for simple).

6. For the grammar considered above, a is not in Follow(S). So, we should
never reduce using the production < S > → ǫ if the next “input”
symbol is a. Therefore, the three states with LR(0) conflicts really
don’t have conflicts at all.

7. In general, we will say that a set of LR(0) items contains an SLR(1)
conflict if either:

(a) It contains two reduce items [N→β1.] and [M→β2.] such that the
intersection of Follow(N) and Follow(M) is non-empty, or

2

(b) It contains a reduce item [N→β1.] and a shift item [M→β2.xβ2]
such that x ∈ Follow(N).

8. If the LR(0) machine for a grammar G contains no states with SLR(1)
conflicts we say that G is an SLR(1) grammar.

9. An SLR(1) parser for an SLR(1) grammar G behaves as follows in state
π when the next input symbol is “x”:

• reduce using production N→β if [N→β .] ∈ π, and x ∈
Follow(N).

• shift in next input if π contains one or more items of the form [
N→α.xβ].

• error otherwise.

3

