
CS 434 Meeting 18 — 4/18/06

Anouncements
1. Phase 3? (Building a little parser with Yacc) should be finished by the

end of the week.

Saving Registers during Calls

1. When generating calls within expression and code for non-void meth-
ods, you must include code to ensure that register values are preserved
during all calls.

(a) Registers are typically partitioned into:

Callee saved registers whose values the called method must
save and restore (if it uses them).

Caller saved registers whose value the calling method must
save and restore (if it depends on them after the call).

It is possible (and not uncommon) to put all registers in one group
or the other (callee-saved is the favorite).

(b) Callee saving has the advantage of keeping the total size of your
code small (each method only contains one set of instructions to
save registers).

Note: You have to generate the register saving instructions before
you know what registers need to be saved. The fact that you
are generating assembly code lets you leave this problem to the
assembler by using a symbolic name for the mask that determines
what registers need to be saved.

(c) Caller saving has the advantage that you only save the registers
in use at a particular call rather than all registers ever used in the
procedure (although you may end up saving registers that aren’t
altered by the called procedure).

2. You can divide the available registers into two set — one to be handled
callee-saved, the other set handled caller-saved.

3. A register allocator can be designed to take advantage of these two
classes of registers:

• Use caller saved registers to hold values whose usefulness begins
and ends in a section of code including no calls (entire body of
any “leaf” procedure.

• Use callee saved registers for values produced before and needed
after a call.

4. Where are register values saved?

(a) In the caller’s frame — for caller saved registers.

(b) In the called method’s frame — for callee saved.

In both cases, the stack pointer will be incremented as part of the regis-
ter saving (rather than treating them as locals counted in determining
localsize).

The Correctness of LR(0) parsing

1. The correctness of the LR(0) parsers we have discussed rests on the
theorem:

Theorem [N→β1.β2] ∈ ∆(π0, γ) iff [N→β1.β2] is valid for γ.

2. Rather than completely prove the theorem, I would like to prove it
in one direction (the easy one) and let you convince yourselves of the
other direction. In particular, we will prove that:

[N → β1.β2] ∈ ∆(π0, γ) only if [N→β1.β2] is valid for γ.

3. We can break the proof of this half of the theorem into two lemmas:

Lemma 1: Given a set π of LR(0) items valid for some γ ∈

(Vn ∪ Vt)
∗, all items in closure(π) are valid for γ.

Lemma 2: For kernel items, [N → β1.β2] ∈ ∆(π0, γ) only if
[N→β1.β2] is valid for γ.

About this closure stuff...

1. When we build an LR(0) machine we use the following algorithm to
compute closures:

1

• An algorithm to compute closure(π)

(a) set π′ equal to π.

(b) while there is some [N→β1.Mβ2] ∈ π′ such that M→β3 ∈ P
and [M→.β3] /∈ π′ add [M→.β3] to π′.

2. We can prove that each item in closure(π) is valid for γ using an
argument based on showing that the claim that execution of the loop
body preserves the “invariant” that all items in π′ are valid for γ.

basis? All items in π are assumed valid for γ, so the invariant will be
true when the loop begins to execute..

induction? Assume that all item in π′ are valid for γ and let [M→.β3]
be the item added during an execution of the loop body. The addi-
tion of this item implies that some item of the form [N→β1.Mβ2]
must have already been in π′. By the assumption that the in-
variant holds at the beginning of each execution of the loop body,
this item must be valid for γ. Accordingly, there must be some
derivation:

S′
∗

=⇒
rm

αNω=⇒
rm

αβ1Mβ2ω

with γ = αβ1. Assuming the grammar has no useless non-
terminals, it must be possible to derive some string of terminals,
ω′ from β2. Thus, there is a derivation:

S′
∗

=⇒
rm

αNω
∗

=⇒
rm

αβ1Mω′ω=⇒
rm

αβ1β3ω
′ω

The existence of this derivation implies that the item [M→.β3]
is valid for γ. Therefore, adding this item to π′ preserves the
invariant.

3. Now, assuming Lemma 1, we can prove Lemma 2 by induction on
the length of γ. The basis step is so simple that we will look at the
induction step first:

induction Assume that we know that the theorem holds for all strings
of length n and consider some string γx such that γ is of length
n and x is a single symbol.

Suppose that [N→β1x.β2] is an item in ∆(π0, γx). The fact that
this item is in this set implies that the item [N→β1.xβ2] must be
in ∆(π0, γ). This, together with our inductive assumption implies
that [N→β1.xβ2] must be valid for γ. Therefore, there exists a
derivation:

S′
∗

=⇒
rm

αNω=⇒
rm

αβ1xβ2ω

with αβ1 = γ. This, however implies that [N→β1x.β2] is indeed
valid for γx.

basis Similarly, when we consider strings of length 0, the only kernel

item in ∆(π0, ǫ) is [S′
→.S]. The derivation S′

∗

=⇒
rm

S′=⇒
rm

S shows
that this item is valid for ǫ.

Garbage Collection

1. In writing the various phases of the compiler project, you will find
yourself spending a good bit of time making sure you “free” memory
areas that were no longer in use:

• You should have already realized that you have to think a bit
about when to free operand descriptors.

– This may be interesting because some operand descriptors
(those for A5 and A6 for example) are referenced from many
places and can’t be freed when one reference to them is de-
stroyed.

– In an optimizing compiler that recognized common sub-
expressions, any operand descriptor might have multiple ref-
erences making the decision when to free quite complicated.

2. If we were writing compilers in Java, this just would not be an issue.

• While Java has a “new” operation that allocates storage much
like C’s “malloc”, there is no “free”.

• The Java compiler and run-time system automatically find and
recover dynamically allocated values that are no longer accessible.

2

3. This approach to dynamic memory management has been standard
in applicative languages (LISP, ML, Miranda, Haskell, etc.) for years
(forever?). It makes programming simpler, safer, but possibly less
efficient.

4. Garbage collection is the process of automatically reclaiming dynami-
cally allocated memory areas.

5. The area in which dynamically allocated memory resides is called the
“heap”.

6. Before we worry about how to automatically deallocate space from a
heap, lets talk about some simple ways to organize a heap and allocate
space as needed.

Free lists Have allocated and available areas of memory intermixed
with the unallocated units linked together on a “free list”.

Free/used regions Maintain a register/variable pointing to the mov-
ing boundary between the allocated and unallocated regions of
memory. Note: In this scheme the “allocated” region will consist
of intermixed used and un-used (i.e. garbage) words.

7. The “free list” idea works best if all the units of memory allocated are
of the same size. This was true in the first significant language whose
implementation relied heavily on garbage collection, LISP.

8. A dynamically allocated data structure in the heap can be safely dis-
posed and its memory space reused only if it can no longer be accessed.
This is true when no variable or method parameter (or hidden tem-
porary) or other accessible dynamically allocated object refers to it.
Thus, to find the garbage we must find the stuff that can’t be found!

• The trick is that we can find out what can’t be found by finding
out what can be found.

• The variables, method parameters and hidden temporaries are re-
ferred to as “roots”. We must search for findable objects starting
at each root.

So, the “main program” of a garbage collector might look like:

for each record in heap do

record->alreadyfound = false

for each root do findThings(root)

• Once an object is found, we must recursively “find” all the objects
it points to. So, the “findThings” pseudo-code looks something
like a “careful” tree traversal:

findThings(root)

{

if (root != NULL && ! root->alreadyfound)

then { root->alreadyfound = TRUE;

for all ‘‘child’’ren of root do

findThings(child)

}

}

9. The next question is what to do when we find things. Two common
answers:

Mark-scan Just set a bit to mark the items as “found” as suggested
in the code above. Then later make a pass through the whole heap
and identify anything that isn’t marked as “unfindable” stuff that
can be reused.

Copying Move everything found to a new, unused heap space (and
update all pointers to refer to the new copies). When this is all
done, the new heap will have used and free space but no garbage.

10. Mark-scan garbage collection was developed for the implementation of
LISP where all objects were of the same size. So, as the heap was
scanned for free areas they could just be added to the free list.

11. So, to make this all work, we have to plan the layout of data in memory
in a way that will let us:

• Find all the roots.

• Find all the pointers within a record once we find the record in
the heap.

3

• Avoid copying things twice.

• Know where each object has been moved to

• Update all pointers during copying.

12. The simplest approach to most of these requirement is to “tag” each ob-
ject and/or pointer with a “descriptor” (sometimes one bit is enough)
that will tell the garbage collector what it is.

• To find all the pointers in a record, we at least need to know how
big the record is. So, the first “descriptor” we might use is a
length field at the start of each record in the heap.

• Because a record may contain both pointers and non-pointer val-
ues, we either need a descriptor for the whole record or descriptors
for each element.

– This can be done by multiplying all integer values by 2 (so
their low order bits will be 0) and making sure that all records
are allocated on odd addresses (so that pointers will have 1’s
in their low order bits).

– Addition and subtraction can ignore the factor of 2. After
each multiplication, you will need to divide the result by 2....

– On the 34000 this would be costly (wastes one out of 16
bits and words on the heap), but on real machines it works
very well (1 out of 32 bits isn’t bad, and on many machines
all records have to be stored on odd or even byte addresses
anyway).

• We also need some way to tag a record that has already been
moved. Since its contents are not important after it has been
moved, there are plenty of ways to handle this (set its length to
0?).

4

