
CS 434 Meeting 12 — 3/14/06

YACC
1. Yacc is a parser generator.

2. Basic form of input specification contains three main secitons

(a) Declarations and directives for the parser generator

(b) Rules of grammar

(c) Program text (i.e. action routines, ...)

separated by lines containing only “%%”.

3. Grammar Rules

• Each rule takes the form:

non-term : BODY-1 | . . . | BODY-n ;

• A BODY is just a list of token names, non-terminal names and
literals.

• A literal is a quoted character:

expr : expr ’+’ term

You will probably not use any literals.

• Token names are used to identify tokens such as the keywords and
token classes such as identifier or integer constant.

– You can’t use quoted strings to identify such tokens literally
because all the scanner gives to the parser is a token class
and token value.

– So that Yacc can distinguish token names from non-terminal
names, all token names must be declared as such.

• Names are composed of letters, digits, underscores and periods.
Each name must start with a letter. Case is significant.

4. Declarations.

• To declare a token name, type

%token name

in the first section of the specification file

• One can also specify the numeric value that the scanner will re-
turn when it sees this token. It is generally easier, however, to
let YACC assign token numbers. This is true because YACC pro-
duces a file named ‘y.tab.h’ (which we will rename ‘tn.h’) that
contains #define’s associating token names that can be used in
the scanner with the numbers assigned.

5. Standardizing dates: An example.

%token MONTH

%token NUMBER

%%

date : day MONTH year

| monthnum ’/’ day ’/’ year

| MONTH day ’,’ year

;

monthnum : NUMBER ;

day : NUMBER ;

year : NUMBER ;

• The y.tab.h file produced when YACC processes this file looks
like:

define MONTH 257

define NUMBER 258

Semantic Actions, Semantic Records and All That

1. Given an “automatic parser generator” like YACC, we need a way
to indicate what “(semantic) actions” should be associated with each
grammar rule when it is used in a parse to produce the desired inter-
mediate form.

2. A grammar can be annotated to indicate where semantic processing
should occur by naming the actions and including the names at appro-
priate places in the grammar.

1

• For example, the annotations on the production for the else-less
if statement for a one-pass compiler that generated assembly lan-
guage code might look like:

< stmt > → if < expr > #gen-else-branch

then < stmt > end #gen-else-target

3. A semantic action will typically produce a value to be associated with
a node in the parse tree (not the syntax tree). It may need to access
the values associated with the children of the node it is to label with
a value.

• Imagine semantic actions routines that generate code for expres-
sions:

< expr > → < expr > + < expr > #gen-add

– Each semantic action will need to know where the value com-
puted for each sub-tree of the expression will be found at run
time (i.e. what register or memory locations). This informa-
tion will be provided as the labels associated with nodes in
the parse tree by the semantic action routines.

4. The parser should (can, must) help by keeping track of the values
produced by semantic actions as the parser proceeds.

• This is simple in a bottom-up parser. When the handle is reduced,
the value produced by any action associated with the production
used is placed in the stack with the non-terminal to which the
handle was reduced.

5. The parser generator should (can, must) provide a way that actions
can access values associated with terminals and non-terminals in the
handle and specify the value to be associated with the non-terminal to
which the handle is reduced.

Specifying Semantic Actions in YACC

1. Specifying actions in YACC is easy. You simply place C code which
performs the action in braces (i.e. ‘{’ and ‘}’) at the point in the
production where you want the action to occur.

• You can put actions in the middle of rules. Putting them only at
the ends, however, is a bit safer.

2. Passing semantic values around is a bit trickier. The mechanisms used
are illustrated in Figure 1. The actions in the example grammar cause
the parser to take whatever date is read and echo it in the “standard”
form “March 7, 2004”.

• Yacc keeps the semantic values associated with a terminal or non-
terminal symbol in its parse stack until the phrase containing the
symbol is reduced. We will not worry for now about how the
scanner passes a “token value” to Yacc (in addition to a token
number).

• In an action, $1,$2, ... can be used to refer to the values associated
with the symbols in the right hand side of the production.

• In an action, $$ can be used to refer to the value associated with
the non-terminal on the left hand side of the production. Typi-
cally, $$ appears as the target of an assignment in an action.

• Declarations of types and variables used in the actions can be
placed in the first section of the YACC input file if preceded by
a line containing the characters “%{” and followed by a line con-
taining “%}”.

3. If semantic values of any type other than integer are used, you must
define the type name “YYSTYPE” to describe the type used (This
definition can be included in the first section of the input file).

4. If the type YYSTYPE is a union type (it usually is) you should (can,
must) tell YACC which member of the union will be associated with
each terminal and non-terminal whose value is set or used.

• For tokens this is done by including the member name between
‘<’ and ‘>’ symbols in each %token declaration.

• For non-terminals a separate %type declaration is used.

Building Scanners with Lex

2

%{

typedef union{

int num;

char *str;

} YYSTYPE;

char *monthtab[] =

{ "January", "February", "March", "April",

"May", "June", "July", "August",

"September", "October", "November", "December" };

%}

%token <str> MONTH

%token <num> NUMBER

%type <str> monthnum

%type <num> day year

%%

date : day MONTH year { printf("%s %d, %d", $2, $1, $3); }

| monthnum ’/’ day ’/’ year { printf("%s %d, %d", $1, $3, $5); }

| MONTH day ’,’ year { printf("%s %d, %d", $1, $2, $4); }

;

monthnum : NUMBER { $$ = monthtab[$1 - 1] ; }

;

day : NUMBER ;

year : NUMBER ;

Figure 1:

• There is a tool for building scanners that is very similar to Yacc named
Lex.

• While Yacc views the input file as a unit onto which it must impose
some structure, Lex views the input as a stream of many small entities
it must recognize.

A Lex definition is therefore a series of descriptions of the different
types of “small entities” that might appear paired with “actions” (more
C code) describing what to do if they appear.

• In Lex, a notation for writing regular expressions is used to describe
the types of tokens the scanner should look for.

• Like a Yacc input file, a Lex input file has three parts separated from
one another by lines beginning with a pair of percent signs.

1. The first section contains declaration of two types:

– C declarations to be included as part of the final C source for
the parser function “yylex()”.

– declarations of identifers that can be used as predefined reg-
ular expression in the next “rule” section.

2. The second section is the actual rules describing the scanner. Each
rule consists of a regular expression and some C code to execute
when the regular expression is “matched”.

– The two must appear on a line together separated by some
blank space.

– It is typical to place the C code within braces (this is required
if there is more than a single statement).

3. The third section can be used to add definitions of functions called
by scanner actions.

• The fun part is the syntax for regular expressions.

– Any non-special character (all alphabetics, numerics and some
punctuation) can be used as regular expressions that match them-
selves.

3

– Two regular expressions (including simple ones like single charac-
ters) concatenated together match any string formed by concate-
nating anything that matched the first regular expression with
something that matched the second.

– A regular expression formed by placing a “|” between two other
expression matches anything that matches either of the sub-
expressions.

– parentheses can be used for grouping.

– A regular expression followed by a “*” matches zero or more copies
of the string matched by the original expression.

– A regular expression followed by a “+” matches one or more copies
of the original. A regular expression followed by a ? matches 0
or 1 copies of the original.

– The regular expression . matches any single character.

– The regular expression formed by placing a group of characters
between square brackets (i.e. [and]) matches any single charac-
ter in the group.

– Within square brackets, a sequence of consequtive characters can
abbreviated using a dash as in “[a-z]”.

– etc.

• There are many other notations supported (read the handout). The
most significant is that Lex needs to provide some way to tell it that
the user wants to match a string containing a character like “(” or “*”
that would normally be interpreted as a metacharacter.

– Any quoted string (double quotes) matches itself.

– A character preceded by a backslash, “\”, matches the character
itself.

• To improve the clarity of a Lex specification, you can associate names
with commonly used or complex subexpressions.

– The definitions of such names appear in the first section of the
Lex input file (i.e. before the first %%).

– Each definition is just a line containing a name separated from a
regular expression by blanks and or tabs.

– To use such a name in a later regular expression, you just surround
the name with curly braces.

alpha [a-zA-Z]

...

%%

{alpha}+ printf("I found a word");

• It is possible that several of the regular expressions used in rules in a
Lex rule file might match prefixes of the same input. In such cases,
Lex chooses the longest possible match and, among matches of equal
length, the match with the earliest rule in the file.

• As in Yacc, the actions one pairs with the regular expressions in a Lex
file are just bits of C code.

– To return a token, simply include a “return” statement that re-
turns the token’s token number (which can be referred to symbol-
ically using one of the #defined names from the y.tab.h file Yacc
produces).

– If you also need to associate a token value with the token, some
extra code must be included in the action to assign the appropri-
ate value to the variable “yylval”.

– “yylval” is actually defined external to Lex (by Yacc) and is of
type YYSTYPE (the semantic value type used in the associated
Yacc file).

• Within the actions, there are some special variables that can be used
to access information about the strings matched:

– yytext is the string matched.

– yyleng is the length of the match.

• If you don’t include a return in an action, Lex will happilly go on
matching substrings to regular expressions.

4

• If no regular expression matches some portion of the input, Lex will
copy the unmatched character to standard output.

• With these facts about Lex in mind, the following is an example of a
Lex specfication appropriate for our dates example.

%{

#include "tn.h"

typedef union {
int num;

char *str;

} YYSTYPE;

extern YYSTYPE yylval;

char * makecopy(char * str);

%}

alfa [a-zA-Z]

digit [0-9]

%%

"," { return ’,’; }
"/" { return ’/’; }
{alfa}+ { yylval.str = makecopy(yytext); return MONTH;

}
{digit}+ { yylval.num = atoi(yytext); return NUMBER; }
. { }

%%

char * makecopy(char * str) {
char * result;

result = malloc(strlen(str) + 1);

strcpy(result,str);

return result;

}

5

