
CS 434 Meeting 10 — 3/7/06

Anouncements
1. I will be away this afternoon and miss office hours.

Generating Code for expressions used as conditions (cont.)

1. gen-cond-expr must be able to generate code for any expression, in-
cluding simple arithmetic operations. The easiest way to do this is to
count on the genexpr function we discussed in the last class to calculate
the value of the expression and then compare it to 0.

gencondarithmetic(node *expr, int sense, codelabel *target)

{ oprndesc *valdesc;

valdesc = genexpr(expr)

output "CMP #0,valdesc"

if ( sense )

output "BNE target"

else

output "BEQ target"

}

2. Genexpr can use a similar trick to generate code for logical and re-
lational operators. That is, genexpr will call gen-cond-expr for such
operators.

Generating Code for REAL Control Structures

1. Now that we know how to handle conditionals, we can consider the
control structures in which they are used.

• Consider the code that the if statement routine sketched last class
would produce for:

if x <> 0 then

if y <> 0 then stmt 1

else stmt 2

else

stmt 3

It will look like:

CMP #0,x

BEQ label3

CMP #0,y

BEQ label5

<code for stmt 1>

JMP label6

label5 <code for stmt 2>

label6 JMP label4

label3 <code for stmt 3>

label4

– Note: the branch after stmt 1 branches to another branch.

2. Just as it was helpful to pass a branch target as a parameter to genCon-
dExpr, we can generate better code for control structures if we branch
targets as inherited semantic information to our code generation rou-
tines for statements. In particular, we must pass each statement a label
for the statement that follows it, sometimes called its continuation.

• The code to handle the if statement then becomes:

gen_if(node * ifstmt, codelabel *nextlabel)

{ codelabel lab1;

oprnd_desc *result;

genlabel(&lab1);

gencondexpr( ifstmt->internal.child[0]

FALSE, &lab1 );

gen_stmt(ifstmt->internal.child[1],

nextlabel);

output ‘JMP nextlabel’

place_label(&lab1);

1



gen_stmt(ifstmt->internal.child[2],

nextlabel);

}

which would produce the following code for the example above
(assuming the routine that called the if statement passed label4
as nextlabel):

CMP #0,x

BEQ label3

CMP #0,y

BEQ label5

<code for stmt 1>

JMP label4

label5 <code for stmt 2>

JMP label4

label3 <code for stmt 3>

label4

– Note that the JMP after the code for stmt2 no longer branches
to a JMP.

3. Notice that it is not just the if statement routine that expects “nextla-
bel” as a parameter. Even the generic “genstmt” expects this param-
eter! This is because genstmt may end up finding that it was asked
to process an if statement (or a while loop) which will actually use
“nextlabel” as the target of a branch.

Then again, it may find out that it was called for an assignment state-
ment and not use “nextlabel” at all.

4. To make this work, you will have to place a label after each statement
in a statement list (except the last) so that you have something to
pass to “genstmt”. That is, your code to generate a statement list
will have a loop that runs through the list of statements generating
code for them. As it does this, it will have to generate a label to place

between each pair so that it can pass that label as the nextlabel for
the statement that precedes it.

5. To keep the code you generate more readable, you might want to store
a flag in each codelabel indicating whether it was used. Then, when
asked to place the label, only place it in the output if it was actually
used.

Beware that the label placed at the start of a while loop body will not
be used until after it has been “placed”.

Parsing: The Problem of Finding a Derivation

1. Given a grammar G and a string σ that one believes is a member of
L(G) there are two basic ways that one can attempt to find a derivation
of σ from S.

Top-down parsing Begin with the start symbol of G and repeatedly
substitute the left hand side of a production for a non-terminal
until the start symbol has been rewritten to match σ.

Bottom-up parsing Begin with σ and repeatedly “simplify” the
string by replacing a sub-string that matches the right hand side
of a production by the non-terminal on its left hand side until σ

has been simplified to S.

2. In our discussion we will make the assumption that we want to produce
derivations “on-the-fly”. That is, that we do not want to hold the entire
input string in memory but wish to generate a derivation while making
a single pass through the input string.

Top-down Parsing

1. At any step in the process of a top-down parse, one has a sentential
form that one wishes to re-write so that it more closely matches the
target string (σ). At each such step one must make two choices:

(a) which of the non-terminals in the current sentential form to re-
place (left-most to support left-to-right processing of input).

(b) which production to apply to the selected non-terminal.

2



2. To eliminate the evil influence of intuition, let’s consider finding a
derivation given a not very meaningful grammar:.

< S > → a < R > | b < S > b < R >

< R > → b < R > | a

3. Consider the process of using a top-down parser to find a derivation
for ’bbaababa’ relative to the grammar given above.

Matched Tail of Pending
Terminals Sentential Form Input

< S > bbaababa
b < S > b < R > baababa

bb < S > b < R > b < R > aababa
bba < R > b < R > b < R > ababa

bbaab < R > b < R > aba
bbaabab < R > a

bbaababa ǫ ǫ

4. Note that:

(a) If we concatenate “Matched” and “Tail of Sentential Form” we
always obtain a complete sentential form of the grammar,

(b) the “Tail of Sentential Form” column behaves like a stack.

A top down parser can be implemented by explicitly maintaining this
stack as a data structure.

5. To make our parse “deterministic”, we want to decide how to expand
the first terminal on the stack based only on what we have matched so
far and on some finite prefix of the remaining input. If this is possible
using a prefix of lenght k, we say that the grammar is LL(k).

6. In many cases, this is not possible for any k.

• Consider the productions:

< stmt > → if < expr > then < stmt > end
| if < expr > then < stmt > else < stmt > end

• Suppose that we have generated a sentential form in which the
left-most non-terminal is < stmt > and the next input characters
to be read is “if”. Which production should we choose?

7. For most languages, however, we can find a grammar in which one can
determine which production to use next by just looking at the first
unmatched character. Such a grammar is called an LL(1) grammar.

8. The following grammar:

< stmt > → if < expr > then < stmt > < iftail >

< iftail > → else < stmt > end
| end

is obviously LL(1) because:

(a) The right hand side of each production begins with a terminal,
and

(b) if two productions have the same left hand side, then their right
hand sides begin with different terminal symbols.

A grammar with these two properties is said to be an S-grammar. Any
S-grammar is LL(1).

9. In the case of top-down parsing, this assumption of a determinisitic
parse produced using a single scan through the input leads to the
production of left-most derivations.

• If at some point we have derived the sentential form xAβ (where
x is a string of terminals, A is a non-terminal and β is composed
of terminals and non-terminals) while trying to parse σ, we would
want to read in at least the prefix x of σ before proceeding further.

• If we expand A at this point, any prefix of terminals included
in the left-hand side we substitute for A will need to be checked
against the next input characters following x.

• If we instead expand some non-terminal in β we will either need
to read past all the terminals that will eventually be matched

3



by A (saving them so that we can check that they match later)
or have to remember to check the correctness of the substitution
made for A later.

10. One of the attractions of top down parsing is that there is a simple
scheme for implementing a top down parser in any language that sup-
ports recursion. The following procedure skeletons show how such a
“recursive descent” parser for the S-grammar:

< S > → a < R > | b < S > b < R >

< R > → b < R > | a

would look (it assumes that “ch” holds the next input character to be
processed):

procedure R;

if ch = ’b’ then

getnextchar;

R;

else if ch = ’a’ then

getnextchar;

else

error

end

end R;

procedure S;

if ch = ’a’ then

getnextchar;

R;

else if ch = ’b’ then

getnextchar;

S;

if ch = ’b’ then

getnextchar;

else

error;

end;

R;

end

end R

11. One of the nice things about recursive descent parsing is that you can
“massage” the code instead of the grammar.

4


