1. We say that a language is recursively enumerable if we can build a TM, \(E \), that will write a sequence of strings that belong to \(L \) on one of its tapes in such a way that every \(w \in L \) will eventually appear in this sequence. As a result, we can think of the machine as numbering the elements of \(L \) (it would be easy though time consuming to eliminate any duplicates). Each \(w \in L \) is associated with the number of the position at which it appears within the sequence output by \(E \).

2. Last class, we saw that every recursively enumerable language \(L \) is recognizable.
 - Given an enumerator \(E \) for a language, we can build a recognizer \(R \) for the same language by having \(R \) run \(E \) as a sub-machine and every time \(E \) writes a new member of \(L \) on its tape compare that member to \(R \)'s input. If they match, \(R \) accepts.

3. Slightly more surprising (and subtle to prove) is the fact that every Turing-recognizable language is also recursively enumerable.

4. The basic idea is that given a machine \(R \) that recognizes some language \(L \), we can build a machine \(E \) that uses \(R \) to check every string over its alphabet to see if \(R \) accepts and writes all the accepted strings on its tape.

5. We have to be very careful because \(R \) may loop on any \(w_i \notin L \). If we just simulate \(R \) on every element of \(w_0, w_1, w_2, \ldots \) in order our simulator may get stuck in a loop on some early member of the sequence.

1. We implement the enumeration process using a technique called dovetailing. We will design a simulator that simulates \(R \) processing many strings at a time. At each round, our simulator will simulate one step of \(R \) on each string it is currently simulating and then add one more string to the mix.

2. Our machine \(E \) will have three tapes:
 - One will hold the latest string in an enumeration of all strings over \(L \)'s input alphabet.
 - One will hold a sequence of strings representing triples corresponding to configurations reachable by \(R \) on certain inputs together with the input on which the computation that led to the configuration began. That is, each item on the tape might look like \((u,q,v)\#w \) where \((u,w,v) \) is a configuration that \(R \) could reach during a computation that started with \(w \) as input. This sequence of configurations will be divided by special markers into a prefix of configurations that have already been expanded, a middle section of configurations that are currently being expanded, and a suffix that still need to be expanded.
 - The last tape will hold the sequence of strings in \(L \).

3. The machine will execute the following algorithm:
 - Initialize the first tape with \(\epsilon \).
 - Initialize the second tape with \((\epsilon,q_0,\epsilon)\#\epsilon \).
 - Repeatedly (forever):
 - Place a marker at the end of the tape to separate the configurations that will be expanded in this iteration from those added in this iteration.
 - For each unexpanded configuration before this marker:
 * Write the next configuration it would yield at the end of the input tape.
 * Move the marker past this configuration to indicate that it has been expanded.
* If the new configuration is in the accept state, write the input string that started this computation on the output tape.
 – Remove the marker that was used to mark the end of the sequence of configurations that were begin expanded on this iteration.
 – Replace the string w on the first tape with w', the next string over M's alphabet.
 – Add a configuration $(\epsilon, q_0, w')\#w'$ to the end of the second tape.

Closure Properties

(Click for video)

1. A final exercise that might cement our understanding of the differences between decidable, recognizable, and non-recognizable languages is to consider their closure properties.

 - If A and B are decidable languages with deciders M_A and M_B, then
 – We can decide $A \cup B$ or $A \cap B$ by using a two-tape TM to simulate M_A and M_B simultaneously and then appropriately combine their decisions.
 – We can decide AB using a non-deterministic machine that nondeterministically guesses where to divide its input up into an A prefix and a B suffix and then simulates M_A and M_B on the substrings to verify its guess.
 – We can decide \overline{A} by just interchanging the accept and reject states of M_A.

 - The same simulations/arguments work for union, intersection and concatenation if A and B are Turing-recognizable. It is important to realize that it is a bit hard to do union with a deterministic TM. To accomplish this the machine has to interleave the simulation of machines for the individual languages. An easier argument is to have a non-deterministic machine guess which of the languages in the union to check.

 - The complement of a recognizable language is not necessarily recognizable. It should be clear that E_{TM} is a recognizable language, but its complement E_{TM} is a language that seems hard to recognize (we will prove it is impossible shortly).

 - If both A and \overline{A} are Turing-recognizable, then A must be decidable.
 – Given TMs that recognize A and \overline{A} we could run them in parallel on any input on a 2-tape TM. If the A machine accepted we would accept. If the \overline{A} machine accepted, we would reject. If both sets were recognizable, one of the two would happen eventually, so the combined machine would decide the language A.

 - As a result, if there are any languages that are recognizable but not decidable (we haven’t proved such a language exists yet), then recognizable languages must not be closed under complement. In fact, in that case, there must be some recognizable language whose complement is not recognizable.