Depth-First Search and Directed Graphs
Announcements/ Reminders

• Review. **Problem Set Advice handout**
• Can we use results proved in class in assignment solutions?
 • Yes
• **Homework 0 Feedback**: check for annotated comments in PDF along with text box comments, preview of future grading
• Look at **Homework 0 Sample Solutions** posted on **GLOW**
• Pay close attention to feedback: some proofs were not proofs
• **Discussion**:
 • Geometric series question
 • Induction question
Story So Far

• Breadth-first search
• Using breadth-first search for connectivity
• Using breadth-first search for testing bipartiteness

BFS (G, s):

Put s in the queue Q

While Q is not empty
 Extract v from Q
 If v is unmarked
 Mark v
 For each edge (v, w):
 Put w into the queue Q
Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the data structure we use), it changes how we traverse

Whatever-First-Search \((G, s)\):

1. Put \(s\) in the **bag**
2. While **bag** is not empty
 - Extract \(v\) from **bag**
 - If \(v\) is unmarked
 - Mark \(v\)
 - For each edge \((v, w)\):
 - Put \(w\) into the **bag**

Depth-first search: when **bag** is a **stack**, not queue
Depth-First Search: Recursive

• Perhaps the most natural traversal algorithm
• Can be written *recursively* as well
• Both versions are the same; can actually see the “recursion stack” in the iterative version

Recursive-DFS(u):
Set status of u to marked # discovered u
for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
done exploring neighbors of u
Depth-first Search Example
DFS Running Time

- Inserts and extracts to a stack: $O(1)$ time
- For every node v, explore degree(v) edges
 \[
 \sum_{v} \text{degree}(v) = 2m
 \]
- Connected graphs have $m \geq n - 1$ and thus is $O(m)$ and for general graphs, it is $O(n + m)$

IterativeDFS(s):

1. **Push(s)**
2. while the stack is not empty
 1. $v \leftarrow \text{Pop}$
 2. if v is unmarked
 1. mark v
 2. for each edge vw
 1. **Push(w)**
Depth-First Search Tree

- DFS returns a spanning tree, similar to BFS

\[
\text{DFS-Tree}(G, s): \\
\text{Put } (\emptyset, s) \text{ in the stack } S \\
\text{While } S \text{ is not empty} \\
\text{Extract } (p, v) \text{ from } S \\
\text{If } v \text{ is unmarked} \\
\quad \text{Mark } v \\
\quad \text{parent}(v) = p \\
\quad \text{For each edge } (v, w): \\
\quad \quad \text{Put } (v, w) \text{ into the stack } S
\]

- The spanning tree formed by parent edges in a DFS are usually long and skinny
Lemma. For every edge $e = (u, v)$ in G, one of u or v is an ancestor of the other in T.

Proof. Obvious if edge e is in T.

Suppose edge e is not in T. Without loss of generality, suppose DFS is called on u before v.

- When the edge u, v is inspected v must have been already marked visited (why?)
 - Or else $(u, v) \in T$ and we assumed otherwise
- Since $(u, v) \notin T$, v is not marked visited during the DFS call on u
- Must have been marked during a recursive call within DFS(u)
 - Thus v is a descendant of u ■
In-Class Exercise

Question. Given an undirected connected graph G, how can you detect (in linear time) that contains a cycle?

[Hint. Use DFS]
In-Class Exercise

Question. Given an undirected connected graph G, how can you detect (in linear time) that contains a cycle?

Idea. When we encounter a back edge (u, v) during DFS, that edge is necessarily part of a cycle (cycle formed by following tree edges from u to v and then the back edge from v to u).

Cycle-Detection-DFS(u):
- Set status of u to marked

 # discovered u
- for each edges (u, v):
 - if v's status is unmarked:
 - DFS(v)
 - else
 - # found an edge to a marked node
 - found a back edge, report a cycle!
- # done exploring neighbors of u
Directed Graphs

Notation. $G = (V, E)$.

- Edges have “orientation”
- Edge (u, v) or sometimes denoted $u \rightarrow v$, leaves node u and enters node v
- Nodes have “in-degree” and “out-degree”
- No loops or multi-edges (why?)

Terminology of graphs extend to directed graphs: directed paths, cycles, etc.
Directed Graphs in Practice

Web graph:
- Webpages are nodes, hyperlinks are edges
- Orientation of edges is crucial
- Search engines use hyperlink structure to rank web pages

Road network
- Road: nodes
- Edge: one-way street
Directed reachability. Given a node s find all nodes reachable from s.

- Can use both BFS and DFS. Both visit exactly the set of nodes reachable from start node s.

- **Strong connectivity.** Connected components in directed graphs defined based on mutual reachability. Two vertices u, v in a directed graph G are mutually reachable if there is a directed path from u to v and from v to u. A graph G is **strongly connected** if every pair of vertices are mutually reachable.

- The mutual reachability relation decomposes the graph into strongly-connected components.

- **Strongly-connected components.** For each $v \in V$, the set of vertices mutually reachable from v, defines the strongly-connected component of G containing v.

Strongly Connected Components
Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong connectivity? Recall: BFS/DFS on graph G starting at v will identifies all vertices reachable from v by directed paths

- Pick a vertex v. Check to see whether every other vertex is reachable from v;
- Now see whether v is reachable from every other vertex

Analysis

- First step: one call to BFS: $O(n + m)$ time
- Second step: $n - 1$ calls to BFS: $O(n(n + m))$ time
- Can we do better?
Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{rev} = (V, E_{rev})$ where $(u, v) \in E_{rev}$ iff $(v, u) \in E$
- There is a directed path from v to u in G_{rev} iff there is a directed path from u to v in G
- Call $BFS(G_{rev}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Analysis (Performance)

- $BFS(G, v)$: $O(n + m)$ time
- Build G_{rev}: $O(n + m)$ time. [Do you believe this?]
- $BFS(G_{rev}, v)$: $O(n + m)$ time
- Overall, linear time algorithm!

Kosaraju’s Algorithm
Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\text{rev}} = (V, E_{\text{rev}})$ where $(u, v) \in E_{\text{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in G_{rev} iff there is a directed path from u to v in G
- Call $\text{BFS}(G_{\text{rev}}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Analysis (Correctness)

- **Claim.** If v is reachable from every node in G and every node in G is reachable from v then G must be strongly connected
- **Proof.** For any two nodes $x, y \in V$, they are mutually reachable through v, that is, $x \leadsto v \leadsto y$ and $y \leadsto v \leadsto z \blacksquare$
Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?
Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?
Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph \(G \), can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

```
Cycle-Detection-Directed-DFS(u):
    Set status of u to marked # discovered u
    for each edges (u, v):
        if v's status is unmarked:
            DFS(v)
        else if v is marked but not finished
            report a cycle!
    mark u finished # done exploring neighbors of u
```