Approximation Algorithms: Load Balancing
Approximations

- The word *approximation* is used for several flavors of algorithms
- Approximating optimization problems
 - An algorithm is a c-approximation if its cost is $c \cdot \text{OPT}$, where OPT is the optimum cost; ($c < 1$ or a maximization problem, $c > 1$ for min)
- Approximations in an online setting
 - An online algorithm is a c-approximation/1-competitive, if it has cost $c \cdot \text{OPT}$, where OPT is the cost of an offline algorithm (that knows the entire input ahead of time); ($c < 1$ or a max problem, $c > 1$ for min)
- The word approximate is also used to indicate that the algorithm is permitted to make one-sided errors (such false positive)
 - Bloom filter
 - Approximate hitter algorithm (Problem 5(b) on assignment)
Challenges: Approximation Algorithms

- Approximating problems that are NP hard
 - Main challenge is showing that the algorithm performs close to optimal when the optimal solution is not known/NP hard
 - Usually done by lower (upper) bounding the cost of the optimal solution for minimization (maximization) problems

- Approximation for online algorithms
 - High benchmark. Comparison against an optimal that knows the entire future, while the algorithm does not even know the next element
 - Sometimes dealt with using “resource augmentation”—allowing the algorithm some flexibility compared to the optimal
Online: Ski Rental Problem

• Assume that you are taking ski lessons
• After each lesson you decide (depending on how much you liked it and how cold you are) whether to continue to ski or to quit entirely
• Question: rent or buy?
• Cost of renting 1 (say)
• Cost of buying B

- **Offline strategy.** If you knew in advance how many times you would ski, say t times, what is the best strategy?
 • If $t \geq B$ times, then buy, else rent
 • In other words, optimal offline cost is $\min\{t, B\}$
Online strategy. We need to figure out a decision point, a number k such you buy skis on the kth visit (renting before then)

Claim. If we set $k = B$ (the cost of buying skis), we are guaranteed to never pay more than twice of the best offline optimal strategy

That is, buying on the Bth ski visit is 2—competitive

Even if you quit right after the Bth visit, $t \geq B$

Offline cost is $\min\{t, B\} = B$

Online strategy’s cost?

- $(k - 1) \cdot 1 + B = (B - 1) + B = 2B - 1$

Competitive/Approximation ratio?

- $2B - 1/B = 2 - 1/B \leq 2$
Load Balancing

- **Input.** m identical machines; n jobs, and processing times t_1, \ldots, t_m, where job j has processing time t_j (on any machine).
- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.
- Let $S[i]$ be the subset of jobs assigned to machine i.

The **load of machine** i is $L[i] = \sum_{j \in S[i]} t_j$ (total processing time).

```
---    ---
  0     time
```

<table>
<thead>
<tr>
<th>Machine 1</th>
<th>Machine 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>
Load Balancing

- The **makespan** of an algorithm is the maximum load on any machine
 \[L = \max_i L[i] \]

- **Load balancing Problem.** Assign jobs to machines so as to minimize makespan.

- **Claim.** Load balancing is NP hard even with \(m = 2 \) machines

- **Proof.** Reduction from PARTITION problem.

- We will design an approximation algorithm for this problem

- [Greedy returns!] Consider the following greedy strategy:
 - Fix some order on the jobs
 - Assign job \(j \) to machine \(i \) whose load is smallest so far
Load Balancing: Greedy

LIST-SCHEDULING \((m, n, t_1, t_2, \ldots, t_n)\)

For \(i = 1\) to \(m\)

\[
L[i] \leftarrow 0. \quad \text{load on machine } i
\]

\[
S[i] \leftarrow \emptyset. \quad \text{jobs assigned to machine } i
\]

For \(j = 1\) to \(n\)

\[
i \leftarrow \arg\min_{k} L[k]. \quad \text{machine } i \text{ has smallest load}
\]

\[
S[i] \leftarrow S[i] \cup \{j\}. \quad \text{assign job } j \text{ to machine } i
\]

\[
L[i] \leftarrow L[i] + t_j. \quad \text{update load of machine } i
\]

RETURN \(S[1], S[2], \ldots, S[m]\).

- Running time?
 - \(O(n \log m)\) using a priority queue for loads \(L[k]\)
Load Balancing: Greedy Analysis

- **Claim.** Greedy algorithm is a 2-approximation.

- To show this, we need to show greedy solution never more than a factor two worse than the optimal

- **Challenge.** We don’t know the optimal solution. In fact, finding the optimal is NP hard.

- Technique used in approximation algorithm (minimization problem)
 - Lower bound the cost of optimal solution
 - A good enough lower bound can help show that our algorithm cannot be too much worse than the optimal

- In our problem, what are some lower bounds on the makespan of even an optimal algorithm?
Load Balancing: Greedy Analysis

• Let OPT be the optimal makespan.

 • **Lemma.** $\text{OPT} \geq \max_j t_j$.

• **Proof.** Some machine must process the most time-consuming job.

• Any other lower bounds?

 • **Lemma.** $\text{OPT} \geq \frac{1}{m} \sum_j t_j$

 • **Proof.**

 • The total processing time is $\sum_j t_j$

 • Some machine must do a $1/m$ fraction of the total work.
Greedy is a 2-Approximation

- **Proof.** Consider load $L[i]$ of bottleneck machine i
 - Let j be the last scheduled job on machine i
 - When job j was assigned to machine i, i must have had the smallest load
 - That is, $L[i] - t_j \leq L[k] \ \forall 1 \leq k \leq m$
Greedy is a 2-Approximation

- **Proof.** Consider load $L(i)$ of bottleneck machine i
 - Let j be the last scheduled job on machine i
 - When job j was assigned to machine i, i must have had the smallest load
 - That is, $L[i] - t_j \leq L[k] \ \forall 1 \leq k \leq m$
 - Summing over all k and diving by m

 $$L[i] - t_j \leq \frac{1}{m} \sum_{k} L[k]$$
 $$\leq \frac{1}{m} \sum_{k} t_k$$
 $$\leq \text{OPT}$$
Greedy is a 2-Approximation

Proof.

• Consider load $L(i)$ of bottleneck machine i

$$L[i] - t_j \leq \frac{1}{m} \sum_k L[k]$$

$$\frac{1}{m} \sum_k t_k \leq OPT$$

• We know that $t_j \leq OPT$

• Thus, $L = L[i] \leq OPT + t_j$

$$\leq 2OPT \qed$$
Greedy is a 2-Approximation

• Is our analysis tight?
• Close to it.
• Consider $m(m-1)$ jobs of length 1 + 1 job of length m
• How would greedy schedule these jobs?
 • Greedy will evenly divide the first $m(m-1)$ jobs among m machines, will place the final long job on any one machine
 • Makespan: $m - 1 + m = 2m - 1$
• How would optimal schedule it?
 • Give the long job to one machine, the rest split the other small jobs with a makespan m
• Ratio: $(2m - 1)/m \approx 2$
Greedy is Online

- Notice that our greedy algorithm is an online algorithm
- Assigns jobs to machines in the order they arrive
 - Does not depend on future jobs
- Online approximation algorithms are very useful as often the entire input is not known ahead of time
- In online settings, it may be impossible to compute an optimum solution in polynomial time, even when the offline problem is polynomial time solvable
- Can we do better, if we assume all jobs are available at start time?
 - **Offline.** Slight modification of greedy gets better approximation!
Improving on Online Greedy

- Worst case of our greedy algorithm: spreading jobs out evenly when a giant job at the end screwed things up
- What can we do to avoid this?
 - Idea: deal with larger jobs first
 - Small jobs can only hurt so much
- Turns out this improves our approximation factor
- **Longest-processing-time (LPT) first.** Sort n jobs in decreasing order of processing times; then run the greedy algorithm on them
- **Claim.** LPT has a makespan at most $1.5 \cdot \text{OPT}$
- **Observation.** If we have fewer than m jobs, then the greedy solution is clearly optimal (as it puts each job on its own machine)
LPT-first is a 1.5-Approximation

- **Lemma.** LPT-first has a makespan at most $1.5 \cdot \text{OPT}$
- **Observation.**
 - If we have fewer than m jobs, then the greedy solution is clearly optimal (as it puts each job on its own machine)
- **Claim.** If more than m jobs then, $\text{OPT} \geq 2 \cdot t_{m+1}$
- **Proof.** Consider the first $m + 1$ jobs in sorted order.
 - They each take at least t_{m+1} time
 - $m + 1$ jobs and m machines, there must be a machine with at least two jobs
 - Thus the optimal makespan $\text{OPT} \geq 2 \cdot t_{m+1}$
LPT-first is a 1.5-Approximation

- **Lemma.** LPT-first has a makespan at most $1.5 \cdot \text{OPT}$
- **Proof.** Similar to our original proof. Consider the machine M_i that has the maximum load
- If M_i has a single job, then our algorithm is optimal
- Suppose M_i has at least two jobs and let t_j be the last job assigned to the machine, note that $j \geq m + 1$ (why?)
- Thus, $t_j \leq t_{m+1} \leq \frac{1}{2}\text{OPT}$
LPT-first is a 1.5-Approximation

- **Lemma.** LPT-first has a makespan at most $1.5 \cdot \text{OPT}$

- **Proof.** Similar to our original proof. Consider the machine M_i that has the maximum load

 - If M_i has a single job, then our algorithm is optimal

 - Suppose M_i has at least two jobs and let t_j be the last job assigned to the machine, note that $j \geq m + 1$ (why?)

 - Thus, $t_j \leq t_{m+1} \leq \frac{1}{2} \text{OPT}$

 - $T_i - t_j \leq \text{OPT}$

 - $T_i \leq \frac{3}{2} \text{OPT}$

 \blacksquare
Is our 1.5-Approximation tight?

- **Question.** Is our 3/2-approximation analysis tight?
 - Turns out, no

- **Theorem [Graham 1969].** LPT-first is a 4/3-approximation.
 - Proof via a more sophisticated analysis of the same algorithm

- **Question.** Is the 4/3-approximation analysis tight?
 - Pretty much.

- Example
 - m machines, $n = 2m + 1$ jobs
 - 2 jobs each of length $m, m + 1, \ldots, 2m - 1$ + one job of length m
 - Approximation ratio $= (4m - 1)/3m \approx 4/3$
Formal Definition

- Consider an arbitrary optimization problem
- Let $\text{OPT}(X)$: the cost of the optimal solution on a given input X
- Let $A(X)$: the cost of algorithm A on the same input X
- A is a $\alpha(n)$-approximation iff
 \[
 \frac{\text{OPT}(X)}{A(X)} \leq \alpha(n) \quad \text{and} \quad \frac{A(X)}{\text{OPT}(X)} \leq \alpha(n)
 \]
 for all input X of size n
- **Maximization problem**: second inequality is trivial, first matters
- **Minimization problem**: first inequality is trivial, second matters
- **Goal**: Find a useful function of the input to upper and lower on the cost of OPT and A, e.g. $\text{OPT}(X) \geq f(X)/2$ and $A(X) \leq 4f(X)$ means A is a 8-approximation
Acknowledgments

- Some of the material in these slides are taken from
 - Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 - Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/