NP Completeness and More Reductions
List of NP Complete Problems So Far

- Circuit-SAT
- SAT
- 3-SAT
- INDEPENDENT SET
- VERTEX COVER
- SET COVER
- CLIQUE
- More to come:
 - 3-COLOR
 - Subset Sum/Knapsack
 - Hamiltonian cycle / path
Graph 3-Color Problem

- **3-COLOR.** Given an undirected graph $G = (V, E)$, is it possible to color the vertices with 3 colors s.t. no adjacent nodes have the same color.

- We argued last class that $3\text{-COLOR} \in \text{NP}$.

![Graph with 3-coloring]

yes instance
3-SAT to 3-Color Problem

- **Theorem.** 3-SAT $\leq_p 3$-COLOR

- **Proof.** Given a 3-SAT instance Φ, we define G by as follows
 - **Truth gadget:** a triangle with three nodes T, F, X (for true, false and other) — they must get different colors (say true, false, other)
 - **Variable gadget:** triangle made up of variable a, its negation \bar{a} and the X node of the truth gadget — enforces a, \bar{a} are colored true/false
3-SAT to 3-Color Problem

• Theorem. 3-SAT \leq_p 3-COLOR

• Proof. Given a 3-SAT instance Φ, we define G by as follows

 • Truth gadget: a triangle with three nodes $T, F, \text{ and } X$ (for true, false and other) — they must get different colors (say true, false, other)

 • Variable gadget: triangle made up of variable a, its negation \overline{a} and the X node of the truth gadget — enforces a, \overline{a} are colored true/false

 • Clause gadget: joins three literal nodes (from the variable gadget) to node T in the truth gadget using a subgraph as shown below

$$\Phi$$

$$(a \lor b \lor \overline{c})$$
3-SAT to 3-Color Problem

- **Theorem.** 3-SAT \leq_p 3-COLOR

- **Proof.**
 - Clause gadget enforces that in a valid 3-coloring, not all three literals can be colored FALSE
 - Notice that if a, b get the same color (FALSE) then the right-end-point of the triangle must be colored the same (show in blue)
 - \overline{c} can only be colored True in this case (why?)

\[(a \lor b \lor \overline{c})\]
Theorem. 3-SAT \leq_p 3-COLOR

Proof.

- Clause gadget enforces that in a valid 3-coloring, not all three literals can be colored FALSE

- Notice that if a, b get the same color (FALSE) then the right-end-point of the triangle must be colored the same (show in blue)
 - \overline{c} can only be colored True in this case (why?)

\[(a \lor b \lor \overline{c})\]
3-SAT to 3-Color Problem

- Theorem. $\text{3-SAT} \leq_p \text{3-COLOR}$
- All valid 3-colorings of the “half-gadget of the clause) on the left
- Overall G for example instance on the right
3-SAT to 3-Color Problem

- **Theorem.** 3-SAT $\leq_p 3$-COLOR

- **Proof.**

 - (\Rightarrow) If Φ is satisfiable, color the variables based on the satisfying assignment (and because each clause is satisfied) extend the coloring to the clause gadgets.

 - (\Leftarrow) If G is 3-colorable, then we can assign truth values based on the colors (at least one of the literals in each clause must be colored true) and thus the resulting assignment must satisfy Φ.

- Note this problem extends to k-coloring of graphs for $k \geq 3$ and the generalized problem is also hard.
MY HOBBY:
EMBEDDING NP-COMPLEX PROBLEMS IN RESTAURANT ORDERS

WE'D LIKE EXACTLY $15.05
WORTH OF APPETIZERS, PLEASE.

...EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER
TABLES TO GET TO—

—AS FAST AS POSSIBLE, OF COURSE. WANT
SOMETHING ON TRAVELING SALESMAN?

From: https://xkcd.com/287/
Subset Sum Problem

- **SUBSET-SUM.** Given n non-negative integers a_1, \ldots, a_n and a target integer T, is there a subset of numbers that adds up to exactly T?

- **SUBSET-SUM \in NP**
 - Certificate: a subset of numbers
 - Poly-time verifier: checks if subset is from the given set and sums exactly to T

- Problem has a pseudo-polynomial $O(nT)$-time dynamic programming algorithm similar to Knapsack

- We will show that it is NP hard by reducing from vertex cover
 - NP hard problems that have pseudo-polynomial algorithms are called *weakly NP hard*
Vertex Cover to Subset Sum

- **Theorem.** $\text{VERTEX-COVER} \leq_p \text{SUBSET-SUM}$

- **Proof.** Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_1, \ldots, a_t and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T.

![Diagram showing the relationship between VERTEX-COVER and SUBSET-SUM algorithms.](image)
Vertex Cover to Subset Sum

- **Theorem.** \(\text{VERTEX-COVER} \leq_p \text{SUBSET-SUM} \)

- **Proof.** Label the edges of \(G \) as \(0, 1, \ldots, m - 1 \)

- **Reduction.** Create \(n + m \) integers and a target value \(T \) as follows

 - Each integer is a \(m + 1 \)-digit number written in base four
 - Integers representing vertices and edges:
 - \(a_v : m \)th (most significant) digit is 1 and for \(i < m \), the \(i \)th digit is 1 if \(i \)th edge is incident to vertex \(v \)
 - \(b_{uv} : m \)th digit is 0 and for \(i < m \), the \(i \)th digit is 1 if this integer represents edge \(i = (u, v) \)
 - Target value \(T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i \)
Vertex Cover to Subset Sum

• **Theorem.** VERTEX-COVER \(\leq_p \) SUBSET-SUM

• Proof. Label the edges of \(G \) as \(0, 1, \ldots, m - 1 \)

• **Reduction.** Create \(n + m \) integers and a target value \(T \) as follows

• Each integer is a \(m + 1 \)-digit number written in base four

• Example: consider the graph \(G = (V, E) \) where \(V = \{u, v, w, x\} \) and \(E = \{(u, v), (u, w), (v, w), (v, x), (w, x)\} \)

\[
\begin{align*}
 a_u &= 111000_4 = 1344 \\
 a_v &= 110110_4 = 1300 \\
 a_w &= 101101_4 = 1105 \\
 a_x &= 100011_4 = 1029 \\
 b_{uv} &= 010000_4 = 256 \\
 b_{uw} &= 001000_4 = 64 \\
 b_{vw} &= 000100_4 = 16 \\
 b_{vx} &= 000010_4 = 4 \\
 b_{wx} &= 000001_4 = 1
\end{align*}
\]

• If \(k = 2 \) then \(T = 222222_4 = 2730 \)
Vertex Cover to Subset Sum

- **Claim.** \(G\) has a vertex cover of size \(k\) if and only if there is a subset \(X\) of corresponding integers that sums to value \(T\).

- \((\Rightarrow)\) Let \(C\) be a vertex cover of size \(k\) in \(G\), define the subset \(X\) as

 \[X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}\]

- Sum of the most significant digits of \(X\) is \(k\) and all other digits sum to 2.

- Thus the elements of \(X\) sum to exactly \(T\)

\[T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i\]

\[
\begin{align*}
a_u &:= 111000_4 = 1344 & b_{uv} &:= 010000_4 = 256 \\
a_v &:= 110110_4 = 1300 & b_{uw} &:= 001000_4 = 64 \\
a_w &:= 101101_4 = 1105 & b_{vw} &:= 000100_4 = 16 \\
a_x &:= 100011_4 = 1029 & b_{vx} &:= 000010_4 = 4 \\
 & & b_{wx} &:= 000001_4 = 1
\end{align*}
\]

\[E = \{(u,v), (u,w), (v,w), (v,x), (w,x)\} \quad C = \{v, w\} \quad T = 222222_4 = 2730\]
Vertex Cover to Subset Sum

- **Claim.** G has a vertex cover of size k if and only if there is a subset X of corresponding integers that sums to value T

- (\iff) Let X be the subset of numbers that sum to T then there is $V' \subseteq V, E' \subseteq E$ s.t.
\[
X := \sum_{v \in V'} a_v + \sum_{i \in E'} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i
\]

- These numbers are base 4 and there are no carries
- Each b_i only contributes 1 to the ith digit, which is 2
- Thus, for each edge i, at least one of its endpoints must be in V'
 - V' is a vertex cover
- Size of V' must be k: only vertex-numbers have a 1 in the mth position
Subset Sum to Knapsack

- **Knapsack.** Given \(n \) elements \(a_1, \ldots, a_n \) where each element has a weight \(w_i \geq 0 \) and a value \(v_i \geq 0 \) and target weight \(W \) and value \(K \). Does there exist a subset \(X \) of numbers such that

\[
\sum_{a_i \in X} w_i \leq W
\]

\[
\sum_{a_i \in X} v_i \geq K
\]

- **Knapsack \(\in \) NP**
 - Can check if given subset satisfies the above conditions

- **Subset-Sum \(\leq_p \) Knapsack.** \(K = W = T \) and \(w_i = v_i = a_i \) for all \(i \)
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)

 • Hamiltonian cycle reduction images from Michael Sipser’s Theory of Computation Book