
Shikha Singh 
!
!

Joint Work with : 
Michael A. Bender, Samuel McCauley, Andrew McGregor,  

and Hoa T. Vu

Run Generation Revisited:  
What Goes Up May or May Not Come Down



• Contiguous sequence of sorted elements in an array 

• Number of runs:  
‣ Smallest number of runs that partition the array

Run Generation Revisited:  
What Goes Up May or May Not Come Down

5 9 11 2 4 7 6 13 25 30 3 5 7 11

1 2 3 4



21
5
13
14
6… 4 7 9 3 15 17 8 1 … 9 15 17 21

Input Stream Output Stream

Memory

• Run Generation is the first phase of external memory sorting

Run Generation Revisited:  
What Goes Up May or May Not Come Down



• Scan input ingesting elements in memory 
• Write out sorted runs to disk

Run Generation Revisited:  
What Goes Up May or May Not Come Down

Objective: Minimize the number of runs or (equivalently)  
Maximize average run length

21
5
13
14
6… 4 7 9 3 15 17 8 1 … 9 15 17 21

Input Stream Output Stream

Memory



Run Generation Revisited:  
What Goes Up May or May Not Come Down

1973

1963
1963 1967

“If you remember the sixties, you weren't really there.”

1972



Run Generation Revisited:  
What Goes Up May or May Not Come Down

1991
1996

19981997

• Continued experimental studies to improve run length



2010 2011

2003 2006

• Classic Problem: Studied for over 60 years!

Run Generation Revisited:  
What Goes Up May or May Not Come Down



Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Up Runs are monotonically increasing (sorted) 

• Down Runs are monotonically decreasing (reverse sorted)

5 9 11 7 4 2 30 25 13 6 8 12 17 21

1 2 3 4



Run Generation: Problem Definition

• Input: Stream of N elements 
• Can be stored temporarily in a buffer of size M 
• Buffer gets full -> write an element to output stream 
• Next element is read into the slot freed 
• Buffer is always full (except when <M elements remain)

… 9 15 17 21… 4 7 9 3 15 17 8 1

MN t

21
5
13
14
6



Run Generation: Problem Definition

• Algorithm decides what to eject based on 
‣ Contents of buffer, last element written

• Algorithm cannot arbitrarily access input or output 
‣ Read next-in-order from input, append to output

• Algorithm is at time step t if it has written t elements

… 9 15 17 21… 4 7 9 3 15 17 8 1

MN t

21
5
13
14
6



12 5 16 7 3 12

read M write M

8

19

23

sort

Runs of length M

Naive Run Generation: Base Case of External 
Memory Merge Sort

• Bring M elements to the buffer 

• Sort them 

• Write all of them to disk



7

3

12

8 19 23

write M

sort

Runs of length M

• Bring M elements to the buffer 

• Sort them 

• Write all of them to disk

12 5 16

read M

Naive Run Generation: Base Case of External 
Memory Merge Sort



12

5

16

sort

Runs of length M

• Bring M elements to the buffer 

• Sort them 

• Write all of them to disk

…

read M

8 19 23 3 7 12

write M

Naive Run Generation: Base Case of External 
Memory Merge Sort



…

sort

Runs of length M

• Bring M elements to the buffer 

• Sort them 

• Write all of them to disk

… 8 19 23 3 7 12 5 12 16

1 2 3

Naive Run Generation: Base Case of External 
Memory Merge Sort



Classic Algorithm: Replacement Selection

12 5 16 7 3 15

8

19

23

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 12 5 16 7 3 8

15

19

23

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 12 5 16 7 8 15

3

19

23

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 12 5 16 8 15 19

3

7

23

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 12 5 8 15 19 23

3

7

16

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 12 8 15 19 23 3

5

7

16

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 8 15 19 23 3 5

12

7

16

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 8 15 19 23 3 5 7

12

16

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 8 15 19 23 3 5 7 12

16

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Write smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Classic Algorithm: Replacement Selection

… 8 15 19 23 3 5 7 12 16

… 1 2

Runs of length > M

• Fewer runs on nearly sorted input 
‣ If every element is within M of its rank - one run



Performance of Replacement Selection

“The perpetual plow on its ceaseless cycle.” - Knuth

• On random data, expected length of a run is 2M



Performance of Replacement Selection

• However, on inversely sorted input…

3 5 7 8 12 15

23

19

16

… 16 19 23 8 12 15 3 5 7
… 1 2 3

Runs of length M



• Deterministically alternate between up and down runs

Alternating-Up-Down Replacement Selection

3 5 7 8 12 15

23

19

16



Alternating-Up-Down Replacement Selection

• Deterministically alternate between up and down runs

… 3 5 7 16 19 23

8

12

15



Alternating-Up-Down Replacement Selection

• Deterministically alternate between up and down runs

… 3 5 16 19 23 15

8

12

7



Alternating-Up-Down Replacement Selection

• Deterministically alternate between up and down runs

… 3 16 19 23 15 12

8

5

7



Alternating-Up-Down Replacement Selection

• Deterministically alternate between up and down runs

… 16 19 23 15 12 8

3

5

7



Alternating-Up-Down Replacement Selection

… 16 19 23 15 12 8 7 5 3

… 1 2

Runs of length > M

• Deterministically alternate between up and down runs



Alternating-Up-Down Replacement Selection

• Is this better than replacement selection?



Alternating-Up-Down Replacement Selection

• [Knuth 63] On random data, it is worse 
‣ Average run length is 1.5M, compared to 2M

• Is this better than replacement selection?



Two-Way Replacement Selection

• [Martinez-Palau et al. VLDB 10] 

‣ Heuristically choose between an up and down run 

‣ Slightly better than Replacement Selection on some data

Input Buffer

Top Heap

Bottom Heap

Up Run

Down Run

Input



To run up or down, that is the question… 



Our Main Contributions 

• Theoretical foundation of the run generation problem 

• Analyze structural properties of run generation algorithms

“My Momma always said smart things about life and 
chocolates… But I need to know the theory behind it..”



 Our Results

• Alternating-Up-Down Replacement Selection is 
‣ 2-approximation 

‣ Best possible 

• Improve approximation ratio with resource augmentation 

• Improve performance when input is nearly sorted

“My Momma always said smart things about life and 
chocolates… But I need to know the theory behind it..”



Structural Properties of Run Generation 

12 5 16 7 3 15

8

19

23

12 7 3

8

23

15

• If I’ is a subsequence of I, OPT(I’) OPT(I)

OPT(I)



Structural Properties of Run Generation 

12 5 16 7 3 8

15

19

23

12 7 8

3

23

15

• If I’ is a subsequence of I, OPT(I’) OPT(I)

OPT(I)



Structural Properties of Run Generation 

12 5 16 7 8 15

3

19

23

12 8 15

3

23

7

• If I’ is a subsequence of I, OPT(I’) OPT(I)

No-op

OPT(I)



Structural Properties of Run Generation 

12 5 16 8 15 19

3

7

23

12 8 15

3

23

7

• If I’ is a subsequence of I, OPT(I’) OPT(I)

OPT(I)



Structural Properties of Run Generation 

12 5 8 15 19 23

3

7

16

8 15 23

3

12

7

• If I’ is a subsequence of I, OPT(I’) OPT(I)

No-op

OPT(I)



Structural Properties of Run Generation 

12 8 15 19 23 16

3

7

5

8 15 23

3

12

7

• If I’ is a subsequence of I, OPT(I’) OPT(I)

OPT(I)



Structural Properties of Run Generation 

• If I’ is a subsequence of I, OPT(I’) OPT(I)

8 15 19 23 16 7

3

12

5

8 15 23 7

3

12

No-op

OPT(I)



Structural Properties of Run Generation 

• If I’ is a subsequence of I, OPT(I’) OPT(I)

8 15 19 23 16 7 5

3

12

8 15 23 7

3

12

OPT(I)



Structural Properties of Run Generation 

• If I’ is a subsequence of I, OPT(I’) OPT(I)

8 15 19 23 16 7 5 3 12

8 15 23 7 3 12

1 2 3

1 2 3

OPT(I)



Structural Properties of Run Generation 

• Algorithm must always write maximal runs 
‣ Never end a run unless forced to 

‣ Never skip over elements 

Without loss of generality

• Adding elements to an input stream cannot help

Corollary



Structural Properties of Run Generation 

• At each decision point 
‣ Contents of buffer must have arrived during the last run

… …

Initial buffer always gets written

Useful Observations



Structural Properties of Run Generation 

• At a decision point if there is a choice between 
A. Writing more elements (possibly using more runs)  

B. Writing less elements (using fewer runs) 

           Then A followed by an additional run covers B

Useful Observations

A

B

Write A\ B’s elements 
using an extra run 



Theorem: Alternating-Up-Down is a 2-Approx

• Writing extra elements never hurts - I1 subsequence of I2

24 2 16 17 11 10 7 12 15 19

9

8

3

24 2 16 3 9 8 10 11 12 15

7

19

17

Algorithm A1 on input I at time t1

Algorithm A2 on input I at time t2 <  t1

Unwritten sequence at I1 at t1

Unwritten sequence at I2 at t2



Theorem: Alternating-Up-Down is a 2-Approx

• At each decision point, suppose OPT goes up/down 
‣ A maximal up and down run goes at least as far 

‣ Every two runs cover at least one run of OPT

Proof Sketch

t2

OPT 

Up-Down

t1



Lower Bounds 

“Sh*t happens..”

• No deterministic algorithm can do better than a 2-approx 
‣ Adversary switches the upcoming input wrt decision made 

• No randomized algorithm can do better than a 1.5-approx 
‣ Yao’s minimax



Resource Augmentation

• No online algorithm can be better than a 2-approximation 
‣ Can we do better with extra buffer or visibility? 

7

-4

13

-7

23

5

… 3 12

Extra buffer

…

Regular buffer

… 3 12 5 -7 23

7

-4

13
Extra visibility

…



Resource Augmentation: No Duplicates

• Resource augmentation results require uniqueness  
‣ Duplicates nullify extra buffer or visibility provided

9
11
10

10
10
10
10
10
10
10

(c-1)M

M

… 15 14 13 12 … 13 12 10 10 10 10 10 10 10

(c-1)M

cM-buffer cM-visibility

9
11
10

M



Main Idea Behind Resource Augmentation:  
What Would Greedy Do? 

• Greedy chooses the longer run at every decision point 
‣ Not an online algorithm 

• Greedy has some good guarantees 
‣ Upper bound and lower bound on run lengths



• Can be as bad as 1.5 times OPT

M, …,1,0

2M, … , M+1, 1, -1, … , -M

OPT 
1, 2

, …
 , M

 … , 2
M

0,-1, … ,-M

GREEDY

Note: Greedy is Not Optimal 

INPUT 

1,2, … ,M
M+1, … ,2M

0

-1, … ,-(M-1) 1

1

-M



No guarantee on 
OPT’s run length 

• Can be as bad as 1.5 times OPT

M, …,1,0

2M, … , M+1, 1, -1, … , -M

OPT 
1, 2

, …
 , M

 … , 2
M

0,-1, … ,-M

GREEDY

Note: Greedy is Not Optimal 

INPUT 

1,2, … ,M
M+1, … ,2M

0

-1, … ,-(M-1) 1

1

-M



• Greedy has all (except last two) runs of length at least 1.25M 
‣ Consider elements arriving above and below the median 

Guarantee on Greedy Runs

17

13

11

9

5

2

… 1 7 13 4 21 10

M

M/2

M + M/4

M/2

M/2



Greedy: How Long is the Not So Long Run?

Key Lemma
Given an input I with no duplicates, if the length of an initial run r1 is 
greater than or equal to 3M, then the length of an initial run r2 in the 
opposite direction is less than 3M.

• Don’t have to look too far into the future to know greedy’s choice
Take-away



Sketchy Proof of Key Lemma

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

s1 M

s1 needs to fit in 
r2’s buffer 



Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

Both need to fit in 
r1’s  buffer at i

s1 M

Ms2,N + t1,B 



Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

t1,i  : Elements in r1 and read in after i

t1,i cannot be 
included in r2

s1 M

Ms2,N + t1,B 



Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

u2 must eventually 
be in r1

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i  : Elements in r1 and read in after i

Ms2,N + t1,B 



Sketchy Proof of Key Lemma

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i  : Elements in r1 and read in after i

Ms2,N + t1,B 

r1        s1  +  s2,N  +  t1,B  + t1,i   + u2



Sketchy Proof of Key Lemma

Weaker bound of 4M

If r1     4M then t1,i     M

r1        s1  +  s2,N  +  t1,B  + t1,i   + u2

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i  : Elements in r1 and read in after i

Ms2,N + t1,B 



But t1,i needs to fit 
in r2’s buffer

r2 < 4M

Sketchy Proof of Key Lemma

Weaker bound of 4M

If r1     4M then t1,i     M

r1        s1  +  s2,N  +  t1,B  + t1,i   + u2

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i  : Elements in r1 and read in after i

Ms2,N + t1,B 



Theorem: Matching OPT with 4M buffer

1. Read elements until entire buffer (4M) is full 
2. Determine what greedy (with M buffer) would do 
3. Write a maximal run in greedy’s direction

Algorithm

…
3M

M

…

3M

M

Greedy

…



Theorem: 1.5-Approximation with 4M-visibility

M

… 11 5 -7 10 15 2 3 17 20 1

9

11

3

-4
3M

…

W.W.G.D?

1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm



1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm

Theorem: 1.5-Approximation with 4M-visibility

Lemma

At any decision point, if OPT chooses a non-greedy run (say 
down), it’s next run must be in the same direction (down).



Theorem: 1.5-Approximation with 4M-visibility

1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm

OPT 

US



Lower Bound on Resource Augmentation

• With a buffer of size 4M-2 

‣ No deterministic algorithm can do better than 1.5-approx 

• Above lower bound implies lower bound for 4M-2 visibility

Almost tight



Offline Run Generation Problem

• An offline algorithm knows the entire input in advance 
‣ Algorithm with N-visibility

• Polynomial time offline optimal algorithm? - still open!!

“My Momma Michael was so sure that dynamic 
programming would be great….”



Run Generation on Nearly-Sorted Input

Definition

An input is c-nearly sorted if there exists an optimal algorithm 
whose output consists of runs of length at least cM.

Other Results

• Randomized 1.5-approx with 2M-buffer on 3-nearly sorted  

• Greedy offline algorithm on 5-nearly sorted is optimal



Summary of Our Results

Approximation 
Factor Buffer Size Visibility Online Nearly 

Sorted 

2 M M Yes -

1.5 M 4M Yes -

1 4M 4M Yes -

(1+  ) M N No -

1.5 2M 2M Yes 3M

1 M N No 5M

“Run Generation is not a box of chocolates.”



The Road Ahead

• Polynomial offline algorithm  
‣ It was supposed to be the lowest hanging fruit! 

• Practical speed ups 
‣ How can we use the new structural insights? 

• Parallel instead of sequential writes? 
‣ Very similar to Patience Sort



“And that's all I have to say about that..”

A Shout Out to the Team!


