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e Contiguous sequence of sorted elements in an array
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e Number of runs:

»  Smallest number of runs that partition the array



e Run Generation is the first phase of external memory sorting
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e Scan input ingesting elements in memory
e Write out sorted runs to disk
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: Minimize the number of runs or (equivalently)
Maximize average run length
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3 Run_Generatlon Rews1ted o

e Up Runs are monotonically increasing (sorted)

e Down Runs are monotonically decreasing (reverse sorted)
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Run Generation: Problem Definition

Input: Stream of N elements

Can be stored temporarily in a buffer of size M

Buffer gets full -> write an element to output stream
Next element is read into the slot freed

Buffer is always full (except when < elements remain)
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Run Generation: Problem Definition

e Algorithm decides what to eject based on
»  Contents of buffer, last element written

e Algorithm cannot arbitrarily access input or output
» Read next-in-order from input, append to output

e Algorithm is at time step t if it has written 7 elements
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Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort
f\ 8
sl )
: read M : 23 :writeM :
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Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort
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Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Write smallest element in buffer > the last output

» If no such element, start a new run and continue
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Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Write smallest element in buffer > the last output
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Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Write smallest element in buffer > the last output

» If no such element, start a new run and continue
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Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
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Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Write smallest element in buffer > the last output

» If no such element, start a new run and continue

16 \




Classic Algorithm: Replacement Selection

e Fewer runs on nearly sorted input

»  Ifevery element is within M of its rank - one run
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Performance of Replacement Selection

e Onrandom data, expected length of a run is 2M

“The perpetual plow on its ceaseless cycle.” - Knuth



Performance of Replacement Selection

However, on inversely sorted input...
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Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs
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Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs
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Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs
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Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs




Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs
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Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs
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Alternating-Up-Down Replacement Selection

o Isthis than replacement selection?



Alternating-Up-Down Replacement Selection

o Isthis than replacement selection?

e [Knuth 63] On random data, it is

»  Average run length is 1.5M, compared to 2M



Two-Way Replacement Selection

e [Martinez-Palau et al. VLDB 10]

»  Heuristically choos

e between an up and down run

»  Slightly better than Replacement Selection on some data

Input — Input Buffer —

—— Top Heap — Up Run

— Bottom Heap —— Down Run



To run up or down, that is the question...
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Our Main Contributions

e Theoretical foundation of the run generation problem

e Analyze structural properties of run generation algorithms

"My Momma always said smart 2hings aboud life and
chocoldtes... But I need 2o knoe Zhe Cheory betind it.."

h



Our Results

e Alternating-Up-Down Replacement Selection is
»  2-approximation
»  Best possible

e Improve approximation ratio with resource augmentation

e Improve performance when input is nearly sorted

"My Momma always said smart 2hings aboud life and
chocoldtes... But I need 2o knoe Zhe Cheory betind it.."

h



Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)
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Structural Properties of Run Generation
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Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)
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Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)
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Structural Properties of Run Generation

Corollary

e Adding elements to an input stream cannot help

Without loss of generality

e Algorithm must always write maximal runs
» Never end a run unless forced to

»  Never skip over elements



Structural Properties of Run Generation

Usetul Observations

e At each decision point

»  Contents of buffer must have arrived during the last run

Initial buffer always gets written

CEN




Structural Properties of Run Generation

Usetul Observations

e At adecision point if there is a choice between
A. Writing more elements (possibly using more runs)
B. Writing less elements (using fewer runs)

Then A followed by an additional run covers B

Write A\ B’s elements
using an extra run




Theorem: Alternating-Up-Down is a 2-Approx

e Writing extra elements never hurts - I; subsequence of 1.
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Theorem: Alternating-Up-Down is a 2-Approx

Proof Sketch

e At each decision point, suppose OPT goes up/down
» A maximal up and down run goes at least as far

»  Every two runs cover at least one run of OPT

Up-Down
i
OPT

2



L.ower Bounds

e No deterministic algorithm can do better than a 2-approx

»  Adversary switches the upcoming input wrt decision made

e No randomized algorithm can do better than a 1.5-approx

» Yao’s minimax
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Resource Augmentation

e No online algorithm can be better than a 2-approximation
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Can we do better with extra buffer or visibility?
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Resource Augmentation: No Duplicates

Resource augmentation results require uniqueness

4

Duplicates nullify extra buffer or visibility provided
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Main Idea Behind Resource Augmentation:
What Would Greedy Do?

e Greedy chooses the longer run at every decision point

»  Not an online algorithm

e Greedy has some good guarantees

»  Upper bound and lower bound on run lengths




Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

GREEDY OPT
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Can be as bad as 1.5 times OPT

N DA

x?’..‘ o) ®Xxﬂ" 0‘1\1) 1 -M

INPUT

No Suarantee on

& OPT’s yyn length | 2y )

N 0"1 Af
\/If . -7,

GREEDY OPT




Guarantee on Greedy Runs

e Greedy has all (except last two) runs of length at least 1.25M

» Consider elements arriving above and below the median
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Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, if the length of an initial run r; is
greater than or equal to 3M, then the length of an initial run r» in the
opposite direction is less than 3.

Take-away

e Don’t have to look too far into the future to know greedy’s choice




Sketchy Proof of Key Lemma

s1 needs ¢, fit in

12’s buffer




Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

Son+ g <M t: B : Elements of t;in initial buffer

—

—_—

Both need ¢ fit
s buffer ar ;




Sketchy Proof of Key Lemma

Si1 SM

Sa N+ t1,B S M

So N : Elements of S- not in initial buffer

[1,B : Elements of f;in initial buffer

L1,
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Sketchy Proof of Key Lemma

Si1 SM
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Uo SM
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Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

[1,B : Elements of f;in initial buffer
SoN+tip <M b !
l1,i : Elements in I’; and read in after i

M . . .
Uz < U2 : Elements not in "2 and read in before 1
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sS; <M So N : Elements of S- not in initial buffer
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Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

Son+ g <M t: B : Elements of t;in initial buffer

l1,i : Elements in I’; and read in after i
U < M . . .
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Theorem: Matching OPT with 4M buftfer

Algorithm
1. Read elements until entire buffer (4 M) is full
2. Determine what greedy (with M buffer) would do

3. Write a maximal run in greedy’s direction

Greedy

/)




Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do

2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction
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Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

Lemma

At any decision point, if OPT chooses a non-greedy run (say
down), it’s next run must be in the same direction (down).



Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

US

OPT



Lower Bound on Resource Augmentation

Almost tight

e With a buffer of size

»  No deterministic algorithm can do better than 1.5-approx

e Above lower bound implies lower bound for visibility



Oftline Run Generation Problem

e An offline algorithm knows the entire input in advance
»  Algorithm with N-visibility

e Polynomial time offline optimal algorithm? - still open!!

) /V/y W Michae! coas So Swure Zhad dynarnc
programm/ng rooutld be 3reaf .




Run Generation on Nearly-Sorted Input

Definition

An input is c-nearly sorted if there exists an optimal algorithm
whose output consists of runs of length at least cM.

Other Results

e Randomized 1.5-approx with 2M-buffer on 3-nearly sorted

e Greedy offline algorithm on 5-nearly sorted is optimal



Summary of Our Results

Approximations Bt e e bl O nline [ Ay
Factor Sorted
2 M M Yes -
1.5 M 4M Yes -
1 4M 4M Yes -
(1+&) M N No -
1.5 2M 2M Yes 3M
1 M N No 5M

“Run Generation is not a box of chocolates.”




The Road Ahead

e _ Polynomial offline algorithm

»  Itwas supposed to be the lowest hanging fruit!

e Practical speed ups

» How can we use the new structural insights?

e Parallel instead of sequential writes?

»  Very similar to Patience Sort



A Shout Out to the Team!

“And that's all I have to say about thad..”




