Run Generation Revisited:
What Goes Up May or May Not Come Down

Shikha Singh

Joint Work with :
Michael A. Bender, Samuel McCauley, Andrew McGregor,

and Hoa T. Vu
QI stony Brook /AN UMASS
University % 5

vy AMHERST

e Contiguous sequence of sorted elements in an array

5|19 |11|2 |4 |7 |6|13|25|30|3|5]|7 |1

e Number of runs:

» Smallest number of runs that partition the array

e Run Generation is the first phase of external memory sorting

Input Stream

| 4

7

9

3

15

17

Memory

21

5
13
14
6

Output Stream

15

17

21

e Scan input ingesting elements in memory
e Write out sorted runs to disk

Memory

21

%)
13

Input Stream Output Stream

14
41719(131]15[|17|8 |1 6 .| 9 |15|17 |21

: Minimize the number of runs or (equivalently)
Maximize average run length

Internal and Tape Sorting Using the s Applicat
Replacement-Selection Technique® ‘ g eeisiagpinad Business Applications

Martin A. Goetz

Appbod Dot Ressorch, lnc.. Princeton, N. 1. Length of Strings for a Merge Sort

Doxarp E. Kyorm

6 Califormia [natitste of Tochnology
19 3 Pasadena, Calsformsa

1963 1967
Sorting by |
Natural Selection

WD Frarer

Perfectly Overlapped Generation of Long Runs
: for Sorting Large Files*
lHlb‘\-l \I\’ 1] Wait Rescarch Cent YenCOnuw Lin

E———

1972 1973

IF you remember the sixties, you coerent reall v Zhere.

Run Generatio R >

= 0
~ —s,ﬁ

What Goes Up May or May N ot Come Down

FAST (;.',\'R‘ATIO\. (‘)F IJ)\(;. §()‘RIY‘;D RUNS FOR
SORTING A LARGE FiLE Speeding up External Mergesort

YenOhun Lin and Yu-Ho Oheng
Dege. of Electronic “.‘.‘.,,.., LuoQuan Zheng and Per-Ake Larson *

National Taiwan Instioute of Technology

Tager, Tatwan, ROC

1991

Perfectly overlapped generation of long runs on a transputer array for sorting Memory Management during Run Generation in External
Sorting
Yen-Chan Lin*, Horng-Yi Lai Por-Ake Larson Gostz Grasle
Mynirimund of Flecovomas Eapnaering, Noswowid Tarwen Mitaiw of Tochmabogy, P O Bia 90 000 Tager 106, Tabwim W Cruaf! e 1
Rocoowed 18 Masch 19 sovisad 20 Nowember 1998 acorpead 9 Docember 1996 PALcn B microsck com GoutaG Hmcosck com

1997 1998

® Continued experimental studies to improve run length

Run Generatioi(R ted:

= 0
o s,,.

What Goes Up May or May N otCome Down

AN NS ON QUOWLEDGE AND DATA ENGINERSNG. vOx 35 NO &

External Sorting: Run Formation Revisited

Per-Ake Larson, Member, IEEE Computer Society

2003

Two-way Replacement Selection

Xavier Marbnei Palau, David Dominguez-Sal, Josep Liuis Larriba-Pey

UPC, Departament d'Arquitectura de Computadors
Um'su Poltécnca de Catalunya
Campus Nord-UPC, 08034 Barceiona

{xmartine, ddomings, larri @ac.upc.edu

2010

Implementing Sorting in Database Systems
GOETZ GRAEFE

Microsoft

2006

External Sorting on Flash Memory
Via Natural Page Run Generation

YANG Lav, ZHEN HE, Y1I-PINO PHOESE CHEN AND THI NOUYEN

® (lassic Problem: Studied for over 60 years!

3 Run_Generatlon Rews1ted o

e Up Runs are monotonically increasing (sorted)

e Down Runs are monotonically decreasing (reverse sorted)

O (11| 7| 4| 2 |30|25]|13| 6| 8 |12|17| 21

sl sl &

Run Generation: Problem Definition

Input: Stream of N elements

Can be stored temporarily in a buffer of size M

Buffer gets full -> write an element to output stream
Next element is read into the slot freed

Buffer is always full (except when < elements remain)

21

13

14

Run Generation: Problem Definition

e Algorithm decides what to eject based on
» Contents of buffer, last element written

e Algorithm cannot arbitrarily access input or output
» Read next-in-order from input, append to output

e Algorithm is at time step t if it has written 7 elements

21

13

14

Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort
f\ 8
sl)
: read M : 23 :writeM :

12| 5 (16| 7 | 3 |12

Runs of length M

Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort

3
~readM | 1o ~write M
12| 5 |16 8 19 (23

Runs of length M

Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort
f\ = \
5
) read M) 16 ‘writeM)

Runs of length M

Naive Run Generation: Base Case of External
Memory Merge Sort

e Bring M elements to the buffer
e Sortthem
e Write all of them to disk

sort

8119(23[3|7 (12| 5 |1216

Runs of length M

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

19
23

12| 5 (16| 7 | 3 |15

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

15
19
23

12| 5 (16| 7 | 3 8

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

(Em

12| 5 16| 7 8 |15

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

18] T

12| 5 |16 8 15|19

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

16

12| 5 8 |15(19 |23

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

16

12 8 1519 (23| 3

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:

» Starting from a full buffer, output smallest element

» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

12

16

—

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

12

16

Classic Algorithm: Replacement Selection

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Write smallest element in buffer > the last output

» If no such element, start a new run and continue

16 \

Classic Algorithm: Replacement Selection

e Fewer runs on nearly sorted input

» Ifevery element is within M of its rank - one run

815|19|23| 3|5 | 7 |12]16

Runs of length > M

Performance of Replacement Selection

e Onrandom data, expected length of a run is 2M

“The perpetual plow on its ceaseless cycle.” - Knuth

Performance of Replacement Selection

However, on inversely sorted input...

23

19

16

W

15

Runs of length M

16

19

23

12

15

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

23

19
16

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

12

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

AaRN

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

1619 (23|15(|12| 8

Alternating-Up-Down Replacement Selection

e Deterministically alternate between up and down runs

16|19 (2315|128 | 7 | 5 | 3

Runs of length > M

Alternating-Up-Down Replacement Selection

o Isthis than replacement selection?

Alternating-Up-Down Replacement Selection

o Isthis than replacement selection?

e [Knuth 63] On random data, it is

» Average run length is 1.5M, compared to 2M

Two-Way Replacement Selection

e [Martinez-Palau et al. VLDB 10]

» Heuristically choos

e between an up and down run

» Slightly better than Replacement Selection on some data

Input — Input Buffer —

—— Top Heap — Up Run

— Bottom Heap —— Down Run

To run up or down, that is the question...

e g 0 o a
= 2

com . .

lmgﬂip-

Our Main Contributions

e Theoretical foundation of the run generation problem

e Analyze structural properties of run generation algorithms

"My Momma always said smart 2hings aboud life and
chocoldtes... But I need 2o knoe Zhe Cheory betind it.."

h

Our Results

e Alternating-Up-Down Replacement Selection is
» 2-approximation
» Best possible

e Improve approximation ratio with resource augmentation

e Improve performance when input is nearly sorted

"My Momma always said smart 2hings aboud life and
chocoldtes... But I need 2o knoe Zhe Cheory betind it.."

h

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

19
23

12| 5 (16| 7 | 3 |15

3 OPT(I)

23
15

127 | 3

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

15

19
23

12| 5 (16| 7 | 3 8
3 OPT(])
23
I N

12| 7 8

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

3
19
/ 23 \
12| 5 [16| 7 8 |15
9 OPT(I)
23
7

12 | No-op | 8 |15

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

3
7
[—‘ 23 /\
12| 5 |16 8 15|19
9 OPT(])

A RN

12 8 |15

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

3
7
[“ 6 7 T
12 | 5 8 |15(19 |23
9 OPT(])
12
7

No-op | 8 |15 |23

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

3
7
(5 \
12 8 15(19 (23|16
3 OPT(I)
12
8

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

3

12

5 \
8 [15|19(23|16| 7

3 OPT(I)

12

No-op | 8 [15(23]| 7

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

-

8 115/19(|23|16| 7 | 5

OPT(I)

e

8 |15|23| 7

Structural Properties of Run Generation

e IfI isasubsequence of I, OPT(I’) < OPT(I)

19

23

16

7

12

OPT(I)

23

12

Structural Properties of Run Generation

Corollary

e Adding elements to an input stream cannot help

Without loss of generality

e Algorithm must always write maximal runs
» Never end a run unless forced to

» Never skip over elements

Structural Properties of Run Generation

Usetul Observations

e At each decision point

» Contents of buffer must have arrived during the last run

Initial buffer always gets written

CEN

Structural Properties of Run Generation

Usetul Observations

e At adecision point if there is a choice between
A. Writing more elements (possibly using more runs)
B. Writing less elements (using fewer runs)

Then A followed by an additional run covers B

Write A\ B’s elements
using an extra run

Theorem: Alternating-Up-Down is a 2-Approx

e Writing extra elements never hurts - I; subsequence of 1.

9
. 8
Unwritten sequence at I at t; . . .
3 Algorithm A on input I at time t;
24| 2 |16 17 (11 (10| 7 |12 |15 |19
7
. 19
Unwritten sequence at I at t2
17 Algorithm A; on input I at time t2 < t

24| 2 (16| 3|9 | 8 10 | 11 |12 | 15

Theorem: Alternating-Up-Down is a 2-Approx

Proof Sketch

e At each decision point, suppose OPT goes up/down
» A maximal up and down run goes at least as far

» Every two runs cover at least one run of OPT

Up-Down
i
OPT

2

L.ower Bounds

e No deterministic algorithm can do better than a 2-approx

» Adversary switches the upcoming input wrt decision made

e No randomized algorithm can do better than a 1.5-approx

» Yao’s minimax

‘ SHh¥? /IcgﬂpenS .. "

»

Resource Augmentation

e No online algorithm can be better than a 2-approximation

4

Can we do better with extra buffer or visibility?

Extra buffer

-

-7
23

&

7
-4
13

BN

Regular buffer

o
L A
(A)
-4
12 =712
3 5 |°71(23 13
Extra visibility

Resource Augmentation: No Duplicates

Resource augmentation results require uniqueness

4

Duplicates nullify extra buffer or visibility provided

10
(oo

cM-buffer

9

11

1

10

.15

14

13

12

10

10

10

10

M

(c-1)M

cM-visibility

»
T o

p

N
e -

R\
TR
-
9
11
.|13]12|10|10|10|10|10|10|10| [1O
(c-1)M

Main Idea Behind Resource Augmentation:
What Would Greedy Do?

e Greedy chooses the longer run at every decision point

» Not an online algorithm

e Greedy has some good guarantees

» Upper bound and lower bound on run lengths

Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

GREEDY OPT

Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

N DA

x?’..‘ o) ®Xxﬂ" 0‘1\1) 1 -M

INPUT

No Suarantee on

& OPT’s yyn length | 2y)

N 0"1 Af
\/If . -7,

GREEDY OPT

Guarantee on Greedy Runs

e Greedy has all (except last two) runs of length at least 1.25M

» Consider elements arriving above and below the median

1
7 M/2 M+ M/4

M/2
M/2

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, if the length of an initial run r; is
greater than or equal to 3M, then the length of an initial run r» in the
opposite direction is less than 3.

Take-away

e Don’t have to look too far into the future to know greedy’s choice

Sketchy Proof of Key Lemma

s1 needs ¢, fit in

12’s buffer

Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

Son+ g <M t: B : Elements of t;in initial buffer

—

—_—

Both need ¢ fit
s buffer ar ;

Sketchy Proof of Key Lemma

Si1 SM

Sa N+ t1,B S M

So N : Elements of S- not in initial buffer

[1,B : Elements of f;in initial buffer

L1,

21

10

;i : Elements in 1; and read in after 1

/;— B -

L1,i cannot bl

Sketchy Proof of Key Lemma

Si1 SM

Sa N+ t1,B S M

Uo SM

U2 must event

198 m T

So N : Elements of S- not in initial buffer

[1,B : Elements of f;in initial buffer

l1

i : Elements in 1"; and read in after 1

U- : Elements not in > and read in before 1

M&

1710134 |21

10

s

% L

rs

Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

[1,B : Elements of f;in initial buffer
SoN+tip <M b !
l1,i : Elements in I’; and read in after i

M . . .
Uz < U2 : Elements not in "2 and read in before 1

I’ §S1 + SoN + t1,B + t1,i + U>-

Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

Son+ g <M t: B : Elements of t;in initial buffer

l1,i : Elements in I’; and read in after i
U < M . . .
U- : Elements not in 7"’> and read in before 1

I’ §S1 + SoN + t1,B + t1,i + U>-

Weaker bound of 4M

Ifr1 Z4M then ti; ZM

Sketchy Proof of Key Lemma

sS; <M So N : Elements of S- not in initial buffer

Son+ g <M t: B : Elements of t;in initial buffer

l1,i : Elements in I’; and read in after i
U < M . . .
U- : Elements not in 7"’> and read in before 1

I’ SS1 + SoN + t1,B + t1,i + U>-

Weaker bound of 4M

Ifr1 24M then ti; ZM

rs < 4M

Theorem: Matching OPT with 4M buftfer

Algorithm
1. Read elements until entire buffer (4 M) is full
2. Determine what greedy (with M buffer) would do

3. Write a maximal run in greedy’s direction

Greedy

/)

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do

2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

N

11

10

17

20

M

N\

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

Lemma

At any decision point, if OPT chooses a non-greedy run (say
down), it’s next run must be in the same direction (down).

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

US

OPT

Lower Bound on Resource Augmentation

Almost tight

e With a buffer of size

» No deterministic algorithm can do better than 1.5-approx

e Above lower bound implies lower bound for visibility

Oftline Run Generation Problem

e An offline algorithm knows the entire input in advance
» Algorithm with N-visibility

e Polynomial time offline optimal algorithm? - still open!!

) /V/y W Michae! coas So Swure Zhad dynarnc
programm/ng rooutld be 3reaf .

Run Generation on Nearly-Sorted Input

Definition

An input is c-nearly sorted if there exists an optimal algorithm
whose output consists of runs of length at least cM.

Other Results

e Randomized 1.5-approx with 2M-buffer on 3-nearly sorted

e Greedy offline algorithm on 5-nearly sorted is optimal

Summary of Our Results

Approximations Bt e e bl O nline [Ay
Factor Sorted
2 M M Yes -
1.5 M 4M Yes -
1 4M 4M Yes -
(1+&) M N No -
1.5 2M 2M Yes 3M
1 M N No 5M

“Run Generation is not a box of chocolates.”

The Road Ahead

e _ Polynomial offline algorithm

» Itwas supposed to be the lowest hanging fruit!

e Practical speed ups

» How can we use the new structural insights?

e Parallel instead of sequential writes?

» Very similar to Patience Sort

A Shout Out to the Team!

“And that's all I have to say about thad..”

