Run Generation Revisited: What Goes Up May or May Not Come Down

Michael A. Bender, Samuel McCauley, Andrew McGregor, Shikha Singh, Hoa T. Vu

) 4

Introduction What is Run Generation? Prior Work
ey e Replacement Selection [Goetz 1963]: Classic algorithm;
* Run generation is the first phase of external Problem Definition writes repeated maximal up runs
memory merge sort. e Input stream arrives over time; can be Memory e Performance on random data: expected run length twice

* The objective is to scan once through all the data

stored temporarily in a buffer of size M 21 the size of MEmoty; Knuth‘s proof by snow plow

and output runs (sorted chunks of elements) that are e Buffer gets full -> write an element to S o b

as long as possible. output stream, next element is read into the Input Stream 1 Output Stream e 7
* Longer runs lead to a faster merge phase. slot freed lal7l9l3l58l1718] 1 - 1ol1sl17]21 e AT ’ T
* Generating runs before sorting is a common e Buffer is always full (except when <M) e s |
technique used, for example, in Python's Timsort. elements remain) B f T ';j;*‘%iﬁi“. -
e (Classic, well-studied problem in the database e Algorithm decides what to eject based on Up or Down? Up or Down? - o “ =
community for over 50 years. contents of buffer, last element written | N T S S
 Many heuristics have been proposed. e Algorithm can only read (in order) from Runs are contiguous sorted partitions of the output H Repl lection d 1 q
, . , , e Up Runs: sorted in increasing order owever, keplacement selection does poorly on reverse sorte
* We provide a theoretical foundation for run input and append to output . _
. Down Runs: sorted in decreasing order
generation. 23
* We show that alternating between sorted and Goal: Output the minimum number of runs Maximal Runs 19
reverse sorted runs is asymptotically optimal online e Algorithm never skips over elements M e 1 2 3
thrif;iy, yielding at most twice the minimum number sTeTal e e e Algorithm never ends a run until forced to 315|718 12]15 16119123/ sl 12115131 51 7
e We improve performance ratios when the Crux of Run Generation Runs of length M on reverse sorted input
algorithm has extra resources or foreknowlege. N ¢ . * Wlog, an algorithm must write maximal runs

* Most recently, Martinez-Palau et al. [VLDB 2010]:
Heuristically choose between starting an up or down run

_ _/ \. Y,

* Only decision: Write an up run or a down run?

4 N

Alternating Up-Down: Best Possible : Summary of Results h

Resource Augmentation Results

e Deterministically alternating between up and down runs performes Types of Resource Augmentation
worse than Replacement Selection on random input Competitive Ratio | Buffer Size | Visibility Online e Extra Buffer: Algorithm can read into and write from the additional buffer
e Expected run length is 1.5M compared to 2M [Knuth 1963] 2 M M Yes e Extra Visibility: Algorithm can only view a fixed number of future elements
L5 M AM Yes
L.75 2M 2M Yes Extra buffer
Our Result] M AM Vos -
* We show Alternating Up-Down is 2-competitive on any input (1+€) M N No <>
e Tight Lower Bound: No online deterministic algorithm can do better 1.5* 2M 2M Yes / 23 \ Q)
o M N No 7?,4»)
: : 3w (///Z ~ 7 ~
: : » > v
Up-Down i I * On "nearly sorted” input -4
: : -4 L3120 5 -7123
! i \ j 13
: : 13 Extra visibility
| | Regular buffer
OPT E E . .) Main Idea of Resource Augmentation
: : COntaCt Inf ormation e Simulate Greedy: every time pick the direction that leads to a longer run

Greed is Good

Samuel McCauley: smccauley@cs.stonybrook.edu _ .
i 7 o If the greedy run is at least 3M long, then non-greedy run is shorter than 3M

Two runs of Up-Down cover at least one run of OPT Shikha Singh: shiksingh@cs.stonybrook.edu

Hoa T. Vu: hvu@cs.umass.edu Our Results

QN

Random up-down?
 No randomized online algorithm can be better than 1.5-competitive

o o\

 We give an algorithm that can match OPT when provided 4M-buffer

Stony Brook

B We give an algorithm which is 1.5-competitive when provided 4M-visibility
University

AN /

