Online List Labeling
with Predictions

Shikha Singh

Williams College

Joint work with

Samuel McCauley, Benjamin Moseley and Aidin Niaparast

Carnegie
Mellon

University WllllamS

Algorithms with Predictions

» Worst-case is analysis often too pessimistic

* Growing line of work to analyze beyond-worst case
oerformance of algorithms

* Focus on "instances we are more likely to see"

» Future instances look like the past

Algorithms with Predictions

Not necessarily complete

(@ & algorithms-with-predictions.github.io

PAPER LIST = FURTHER MATERIAL HOW TO CONTRIBUTE AB@IT

Newest first 138 papers

arXiv 23 m scheduling

Learning-Augmented Online TSP on Rings, Trees, Flowers and (almost) Everywhere
Else Xefteris

Algorithms with Predictions

‘07 '09 10 17 18 19 20 21 22 '23
Learning-Augmented Online Packet Scheduling with Deadlines Stein, Wei

Bampis, Escoffier, Gouleakis, Hahn, La Nahk;

/)

online

Mixing predictions for online metric algorithms Antoniadis, Coester, Elias, Polak, Simon

arXiv '23 multiple predictions

Online Time-Windows TSP with Predictions
Predictive Flows for Faster Ford-Fulkerson

Online Interval Scheduling with Predictions

Online Minimum Spanning Trees with Weight Predictions

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Chawla, Christou
Davies, Moseley, Vassilvitskii, Wang

Boyar, Favrholdt, Kamali, Larsen

Berg, Boyar, Favrholdt, Larsen

Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary

arXiv '23 m scheduling
arXiv '23 network design m

Lindermayr, Megow, Rapp

Shin, Lee, Lee, An

BEYOND THE
WORST-CASE
ANALYSIS 0F

(B} B |

arXiv '23 @ scheduling

Rethinking Warm-Starts with Predictions: Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L-Convex Function

Minimization

Oki

9 ALGORITHMS

Edited by

TIM ROUGHGARDEN

Data Structures with Predictions

Not necessarily complete

Algorithms with Predictions PAPERLIST FURTHER MATERIAL HOW TO CONTRIBJJTE ~ ABOUT

' ' Newest first 8 papers
07 09 10 17 18 19 20 21 22 23

On the Power of Learning-Augmented BSTs Chen, Chen arXiv '22

Learning-Augmented Binary Search Trees Lin, Luo, Woodruff arXiv '22

A learned approach to design compressed rank/select data structures Boffa, Ferragina, Vinciguerra
On the performance of learned data structures Ferragina, Lillo, Vinciguerra

Repetition- and Linearity-Aware Rank/Select Dictionaries ~ Ferragina, Manzini, Vinciguerra @506 1

The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds Ferragina, Vinciguerra Proc. VLDB Endow. '20

Learned data structures Ferragina, Vinciguerra INNSBDDL 19
The Case for Learned Index fitructures Kraska, Beutel, Chi, Dean, Polyzotis arXiv'17) ey

Challenge: Initially no unified theoretical
framework to reason about predictions

Learning-Augmented Model

* Introduced recently to give a general theoretical framework

for analyzing learned algorithms
* Design and Analysis Goal:
* Performance bounds as a function of error in prediction
* Do well on both extremes (pertect and totally erroneous)
» Degrade gracefully in between

 Essentially want low or no overhead of using predictions

Motivating Example aska et al. sigmop el

e Binary search over a sorted array of n numbers

» Worst case: O(logn) time look up

2 4/i11 16 |22 | 37 | 38 |44 | 88 |89 {93 (94 | 95| 96 | 97 | 98
N A \/

Figure credit: Ben Moseley

Motivating Example aska et al. sigmop el

 Train a predictor 7(x) to predict x's location in array based on

past data
* 7(x) might be wrong, hopetfully not too much
« "“"Warm start” your search at 7#(x)

» Repeatedly double until you find x

’7 Figure credit: Ben Moseley

Motivating Example aska et al. sigmop el

* Analysis: Detine prediction error n = | #(x) — r(x) |
* New lookup cost: O(logn)
» (Best). Perfect prediction: O(1) cost

* (Worst). Completely erroneous: O(logn)

* (Intermediate). Degrades gracefully with error

/\/\;"

2 (4 e 11 DA 37 (38 (44 |88 (8993|194 | 95|96 | 97 | 98

< >

’7 Figure credit: Ben Moseley

Problems Studied in this Model

. Applied to online algorithms [Lavastida Moseley Vassilvitskii '20]
» Warm-starting offline optimization problems
. Bipartite matchings [Dinitz Im Lavastida Moseley Vassilvitskii '21]
e Shortest paths [Chen Silwal Vakilian Zhang '22]
» Convex optimization [Sakaue Oki '22]

* Flows [Davies Moseley Vassilvitskii Wang '23]

| earned Data Structures Literature

Learned Replacements Learned Adaptations

of Data Structures of Data Structures

i P w210
i hagie-) | | [
. ‘é ha (e) , — = | +\ J d:(r

> lhay(ien) . +\)
)|

| earned count-min sketch
[Hsu Indyk Katabi Vakilian '19] :

oo Po %0 %
>)

(18,11)

(19,2)

x5z}

(18,1)

o[ifoli[i]i[ofololofoli[o10l0]1]0] | earned BSTs
[Lin Luo Woodruff
Learned filters '22]
[Mitzenmacher '18]

& follow ups

Learned indices:
[Kraska Beutel Chi Dean Polyzotis ‘18] & many

follow ups, learned hashing [Ferragina

Lehmann Sanders Vinciguerr '23], etc.

| earned Data Structures Literature

Learned Replacements Learned Adaptations

of Data Structures of Data Structures

o e

'\

Exciting empirical results; limited

analysis under assumptions Learned count-min sketch

[Hsu Indyk Katabi Vakilian '19] :

(6,15)

N'l{‘

f.' ot

Exciting theoretical work;

1)

|| Input distribution learned; if robustness to}.

error present - reverts 1o worst case =

b N,

Learned indices:
[Kraska Beutel Chi Dean Polyzotis ‘18] & many

(0f1]oJiJ1[1][ofoJof0[0[1]O0[1[0][O0]1]0] Learned Bbfg
[Lin Luo Woodruff
Learned filters '22]
[Mitzenmacher '18]

& follow ups

follow ups, learned hashing [Ferragina

Lehmann Sanders Vinciguerr '23], etc.

Our Goal

Apply the new learning-augmented model to data structures

Focus on a fundamental data structures problem:

Online list labeling

Online List Labeling Problem

e nitems arrive one by one (from a totally ordered universe)
e Must be stored in sorted order in an array of size m = cn

e Define label(x) as x's slot in array

* Cost: Minimize # relabels (element movements) per insert

i) St Jpiae=in]
; XAk XA P
wEE R p A
¥) k) 1 e & b e
ol] RN]
: : ey
L
Vi , -“‘.
S SR Coel
S S 2]
4 S 2]
RIS By GRS
BTN A P e 5]
& 1 oy Bty
phvi o] vt o it

°

List Labeling Data Structure

* Insert(x) : must store it between pred p. and succ s,

* Might have to move things around to make room

List Labeling Data Structure

* Insert(x) : must store it between pred p. and succ s,

* Might have to move things around to make room

List Labeling Data Structure

* Insert(x) : must store it between pred p. and succ s,

* Might have to move things around to make room

* Must be careful: greedy approach €(n) per insert

"rebalance"

cost = # relabels

Why List Labeling?

* Fundamental building block in many data structures

e Cache-oblivious B trees [Bender Demaine Farach-Colton '00, Bender
Demaine, lacono Wu '02, Brodal Fagerberg Jacob '02] etc.

* Graph data structures [Wheatman Burns '21, Wheatman Xu '18,
Wheatman Xu '21, Pandey Wheatman Xu Buluc '21] etc.

« Studied for over four decades under various names
* Sequential file maintenance [Willard '82, '86]
* QOrder maintenance [Dietz '82, Dietz Slator '87]
. Sparse tables [Itai, Konheim, Rodeh '81]
* Packed-memory arrays [Bender, Demaine, Farach-Colton '00]

* We call any data structure for this problem a list labeling array (LLA)

List Labeling: State of the Art

e Deterministic LLAs: Q(logn) lower bound [Bulanek Koucky Saks '13]

. 0(log2 n) amortized [Itai Konheim Rodeh '81] and worst-case LLA [Willard

'82, '86], simplified by [Bender Cole Demaine Farach-Colton Zito '02], [Katriel
'02], [Bender Fineman Gilbert Kopelowitz Montes '17]

» Best possible for deterministic LLAs [Bulanek Koucky Saks '12]

e Randomized LLAs:

o Recent breakthrough: O(log*? n) expected amortized [Bender

Conway Farach-Colton Komlés Kuszmaul Wein '22] extends HI PMA
[Bender Berry Johnson Kroeger McCauley Phillips Simon Singh Zage '16]

» Specialized LLAs:

° Adaptive PMA [Bender Hu '07] and Rewired PMASs [Deleo Boncz '19]

List Labeling in Learned Indices

* Directly motivated by work on learned indices

» Back to the original motivation from [Kraska et al. 2018]

L earned
Index model

N\

Sorted array

List Labeling in Learned Indices

* To support dynamic learned indices:

* Need to efficiently maintain a dynamic sorted array!

Need a Learned LLA!
Learned

Index model

N\

Sorted array

Gapped Arrays

» Past work on learned indices used a greedy list labeling data

structure: a gapped array [Ding et al. SIGMOD '20]
« Q(n) element movements per insert in worst case

e Assume uniform random insertions

 O(logn) W.h.p. [Bender Farach-Colton Mosteiro '06]

6n

Main Question

How to leverage the learning-augmented framework to

design a learned LLA that guarantees:

» Best possible performance on extremes: best & worst

predictions

* Performance degrades gracefully with error

=
1
-
=
1
8

List Labeling Prediction Model

n elements arrive one by one
» Forsimplicity, ignore deletes for now
Final rank of element x is r(x) after all n elements arrive
Each insert x arrives with a predicted rank 7(x)
» Assigned adversarially based on past inserts/predictions
Prediction error 5, = | r(x) — #(x) |

Maximum error as 7 = max7,

List Labeling with Predictions

Classical Know rank so far: final

rank 7, is unknown

1

6n

3
1

Learned May disagree with

7(p,) or (s,)

Our Results

» [Today's talk] A Learned List Labeling Array that

» Uses existing worst-case LLAs as a blackbox

« Guarantees C(77) amortized cost where C(n) is the
amortized cost of black-box LLA

e Optimal for any error 7 among deterministic LLAs
» Empirically outperforms state-of-the-art LLAs

* [Aside] Stochastic predictions

* Improved bounds in terms of mean and variance of
unknown distribution from which error is sampled

learnedLLA: Description

At any time, partitioned into ¢ actual LLAs P, ..., P,

Each LLA is assighed contiguous ranks and slots that
partition {1,...,n} and {1,...,m} respectively

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

(1, 2.3.4,5.6,7, 8) (9, 10,11,12,13, 14, 15, 16)

—
(9, 10, 11, 12)
) (6 (@ (®» @) v (12

slots = 6 - # assigned ranks

learnedLLA: |nsert |dea

 If new insert's predicted rank agrees with pred and succ
olacement, insert into LLA containing predicted rank

o If it conflicts with pred (succ), insert into the LLA of pred/succ

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

(1, 2.3.4,5.6,7, 8) (9, 10,11,12,13, 14, 15, 16)

——
(9, 10, 11, 12)
) (6 (@ (®» @) v (12

slots = 6 - # assigned ranks

learnedLLA: Example Insert

* F(x) is assigned to red LLA, but pred(x) is stored in green LLA

* |Insert x to green LLA

* |f green LLA more than half full, merge with grey, orange, red

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

(1, 2.3.4,5.6,7, 8) (9, 10,11,12,13, 14, 15, 16)

—
(9, 10, 11, 12)
5 © (O ® 9) Qv (12

slots = 6 - # assigned ranks

learnedLLA: Example Insert

* F(x) is assigned to red LLA, but pred(x) is stored in green LLA

* |Insert x to green LLA

* |f green LLA more than half full, merge with grey, orange, red

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17)

(9,10,11,12,13,14,15,16)

/
(9,10,11,12)
12) G (6 (1)
(1) (2 B @ 6 B G 10) (11) (12)

slots = 6 - # assigned ranks

learnedLLA: Insertion

e | « LLA whose assigned ranks contain 7
X X

P

Insertion:

Iti,> i insertxinto i,

Else it i, < i: insert x into i

Else: insert x into i,
If LLA inserted to more than half full

* Merge with "sibling" LLA

I, (resp i) < LLA whose assigned ranks contain p, (resp s,)

Let blackbox LLA handle
actual slot within

Only case that uses
the predicted rank

ldea: Some element must have
error & size of overfull LLA

learnedLLA: Analysis Idea

« Key lemma: If P is an actual LLA, then it contains some
element x with high enough error: n, > | P|/2

* 3x elements as # assigned ranks

* Some elem responsible for pushing others to this LLA

(},2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

@, 2.3.4,5.6,7, 8) @, 10,11,12,13, 14, 15, 16)

1,2,3.4 (9, 10,11, 12)
@ B® w66 @ ® @9 0w ay 12

slots = 6 - # assigned ranks

learnedLLA: Analysis Idea

« Key lemma: If P is an actual LLA, then it contains some
element x with high enough error: n, > | P|/2

e 3x elements as # assigneb&nks

e Responsible for pushing other Largest LLA size = O(n)

(},2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

@, 2.3.4,5.6,7, 8) @, 10,11,12,13, 14, 15, 16)

1,2,3.4 (9, 10,11, 12)
@ B® w66 @ ® @9 0w ay 12

slots = 6 - # assigned ranks

learnedLLA: Analysis Idea

* Total cost = Relabels within LLAs + Relabels during merges

Dominated by cost of final LLAs Linear cost; lower order term

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

@, 2.3.4,5.6,7, 8) @, 10,11,12,13, 14, 15, 16)

(9, 10, 11, 12)
@ B® w66 @ ® @9 0w ay 12

slots = 6 - # assigned ranks
ENEEEEEEEEEEEEEEEEEEEEEEN NN [TTTTTTTTITT]

learnedLLA: Analysis Idea

* Total cost = Relabels within LLAs = "ol e i oo

At most C(n7) amortized cost of each final
LLA; all nn partitioned across final LLAs

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

@, 2.3.4,5.6,7, 8) @, 10,11,12,13, 14, 15, 16)

(9, 10, 11, 12)
@ B® w66 @ ® @9 0w ay 12

slots = 6 - # assigned ranks
ENEEEEEEEEEEEEEEEEEEEEEEN NN [TTTTTTTTITT]

| ower Bound ldea

e FEasier to see that can't do betterwhenn =0o0orn=mn
* Question. How to prove optimality for intermediate error?

» Ildea. Apply classic lower bound [Bulanek Koucky Saks '12] to

each n/n subproblems of size 7

* Challenge. Can't force big LLA to only use assigned slots

n/n subproblems

Experiments

* LearnedLLA outperforms PMA, APMA on numerous real data

* Inherits performance of APMA when using it as blackbox

Scaling Test Data Size

2
O 6] — PMA
D ——. APMA
E LearnedLLA+PMA
o4 LearnedLLA+APMA
-
<
12 13 14 15 16 17
k=log(n)

Amortized cost

Gowalla Gowalla MOOC AskUbuntu email-Eu-core
LLAS (LocationID) (Latitude)
PMA 7.14 14.56 19.22 24.56 21.49
APMA 7.38 15.63 16.70 10.84 21.43
LearnedLLA + PMA 3.36 6.06 11.99 14.27 16.55
LearnedLLA + APMA 3.36 6.15 12.13 8.49 16.55

Conclusion

* Learning-augmented framework provides a "worst case" way
to reason about learned algorithms

* Only been applied to online algorithms/optimization problems
* Online list labeling structure was very amenable to this model

» Exciting future direction: opportunity to exploit this model
for other data structures

* Main challenge: what to predict and what not to predict
* E.g. how to handle insert + query workloads?

* Open problem from earlier: How to tackle average case error?

