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Algorithms with Predictions

• Worst-case is analysis often too pessimistic 


• Growing line of work to analyze beyond-worst case 
performance of algorithms 


• Focus on "instances we are more likely to see"


• Future instances look like the past



Algorithms with Predictions
Not necessarily complete 



Data Structures with Predictions
Not necessarily complete 

Challenge:  Initially no unified theoretical 
framework to reason about predictions 



Learning-Augmented Model

• Introduced recently to give a general theoretical framework 

for analyzing learned algorithms


• Design and Analysis Goal: 


• Performance bounds as a function of error in prediction 


• Do well on both extremes (perfect and totally erroneous)


• Degrade gracefully in between


• Essentially want low or no overhead of using predictions



• Binary search over a sorted array of  numbers


• Worst case:   time look up

n

O(log n)

Figure credit:  Ben Moseley

Motivating Example [Kraska et al. SIGMOD '18]



Motivating Example [Kraska et al. SIGMOD '18]

• Train a predictor  to predict ’s location in array based on 

past data


•  might be wrong, hopefully not too much


• “Warm start” your search at 


• Repeatedly double until you find 


•

r̃(x) x

r̃(x)

r̃(x)

x

r̃(x)

Figure credit:  Ben Moseley



• Analysis:  Define prediction error 


• New lookup cost:  


• (Best).  Perfect prediction:   cost


• (Worst).  Completely erroneous:  


• (Intermediate).  Degrades gracefully with error

η = | r̃(x) − r(x) |

O(log η)

O(1)

O(log n)

r̃(x)

Figure credit:  Ben Moseley

Motivating Example [Kraska et al. SIGMOD '18]



Problems Studied in this Model

• Applied to online algorithms [Lavastida Moseley Vassilvitskii '20]


• Warm-starting offline optimization problems 


• Bipartite matchings [Dinitz Im Lavastida Moseley Vassilvitskii '21]


• Shortest paths [Chen Silwal Vakilian Zhang '22]


• Convex optimization [Sakaue Oki '22]


• Flows [Davies Moseley Vassilvitskii Wang '23]



Learned Data Structures Literature

Learned Replacements 
of Data Structures  

Learned Adaptations 
of Data Structures

Learned indices:   
[Kraska Beutel Chi Dean Polyzotis  ’18] & many 

follow ups, learned hashing [Ferragina 

Lehmann Sanders Vinciguerr '23], etc.

Learned BSTs 
[Lin Luo Woodruff 

'22]Learned filters 
[Mitzenmacher '18] 

& follow ups

Learned count-min sketch 
[Hsu Indyk Katabi Vakilian '19]



Learned Data Structures Literature

Learned Replacements 
of Data Structures  

Learned Adaptations 
of Data Structures

Learned indices:   
[Kraska Beutel Chi Dean Polyzotis  ’18] & many 

follow ups, learned hashing [Ferragina 

Lehmann Sanders Vinciguerr '23], etc.

Learned BSTs 
[Lin Luo Woodruff 

'22]Learned filters 
[Mitzenmacher '18] 

& follow ups

Learned count-min sketch 
[Hsu Indyk Katabi Vakilian '19]

Exciting empirical results;  limited 
analysis under assumptions

Exciting theoretical work;   
Input distribution learned;  if robustness to 

error present - reverts to worst case



Our Goal

Apply the new learning-augmented model to data structures

Focus on a fundamental data structures problem:


Online list labeling



Online List Labeling Problem

•  items arrive one by one (from a totally ordered universe)


• Must be stored in sorted order in an array of size  =  


• Define label  as 's slot in array


• Cost:  Minimize # relabels (element movements) per insert

n

m cn

(x) x

1 m = 6ni



List Labeling Data Structure

• Insert( ) : must store it between    and succ 


• Might have to move things around to make room 

x pred px sx

1 m = 6n

x

px sx



List Labeling Data Structure

1 m = 6n

• Insert( ) : must store it between    and succ 


• Might have to move things around to make room 
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px sx



List Labeling Data Structure

• Insert( ) : must store it between    and succ 


• Might have to move things around to make room 


• Must be careful:  greedy approach  per insert

x pred px sx

Ω(n)

1 m = 6n

cost = # relabels

"rebalance" 

xpx sx



Why List Labeling?
• Fundamental building block in many data structures


• Cache-oblivious B trees [Bender Demaine Farach-Colton '00, Bender 

Demaine, Iacono Wu '02, Brodal Fagerberg Jacob '02] etc.


• Graph data structures [Wheatman Burns '21, Wheatman Xu '18, 

Wheatman Xu '21, Pandey Wheatman Xu Buluc '21] etc.


• Studied for over four decades under various names


• Sequential file maintenance [Willard '82, '86]


• Order maintenance [Dietz '82, Dietz Slator '87]


• Sparse tables [Itai, Konheim, Rodeh '81]


• Packed-memory arrays [Bender, Demaine, Farach-Colton '00]


• We call any data structure for this problem a list labeling array (LLA)



List Labeling:  State of the Art
• Deterministic LLAs:


•  amortized [Itai Konheim Rodeh '81] and worst-case LLA [Willard 

'82, '86], simplified by [Bender Cole Demaine Farach-Colton Zito '02],  [Katriel 
'02], [Bender Fineman Gilbert Kopelowitz Montes '17]


• Best possible for deterministic LLAs [Bulánek Koucky Saks '12]


• Randomized LLAs:


• Recent breakthrough:  expected  amortized [Bender 

Conway Farach-Colton Komlós Kuszmaul Wein '22]  extends HI PMA 
[Bender Berry Johnson Kroeger McCauley Phillips Simon Singh Zage '16]  


• Specialized LLAs:  


• Adaptive PMA [Bender Hu '07] and Rewired PMAs [DeLeo Boncz '19]

O(log2 n)

O(log3/2 n)

 lower bound [Bulánek Koucky Saks '13]Ω(log n)



List Labeling in Learned Indices

• Directly motivated by work on learned indices 


• Back to the original motivation from [Kraska et al. 2018]

 
Learned 

Index model 

Sorted array



List Labeling in Learned Indices

• To support dynamic learned indices:


• Need to efficiently maintain a dynamic sorted array!

 
Learned 

Index model 

Sorted array

Need a Learned LLA!



Gapped Arrays
• Past work on learned indices used a greedy list labeling data 

structure:  a gapped array [Ding et al. SIGMOD '20]


•  element movements per insert in worst case


• Assume uniform random insertions


•  w.h.p. [Bender Farach-Colton Mosteiro '06]

Ω(n)

O(log n)

1 m = 6n



Main Question

• How to leverage the learning-augmented framework to 

design a learned LLA that guarantees:


• Best possible performance on extremes:  best & worst 

predictions 


• Performance degrades gracefully with error

η = 0 η = ∞



List Labeling Prediction Model

•  elements arrive one by one


• For simplicity,  ignore deletes for now


• Final rank of element  is  after all  elements arrive


• Each insert  arrives with a predicted rank 


• Assigned adversarially based on past inserts/predictions


• Prediction error  =  


• Maximum error as 

n

x r(x) n

x r̃(x)

ηx |r(x) − r̃(x) |

η = max ηx



List Labeling with Predictions

1 m = 6n

x

px sx

1 m = 6n

x

px sx

r̃x

Classical 

Learned  May disagree with 
 or  r̃(px) r̃(sx)

Know rank so far;  final 
rank  is unknownrx

r̃x



Our Results
• [Today's talk]  A Learned List Labeling Array that


• Uses existing worst-case LLAs as a blackbox


• Guarantees  amortized cost where  is the 
amortized cost of black-box LLA


• Optimal for any error  among deterministic LLAs


• Empirically outperforms state-of-the-art LLAs


• [Aside] Stochastic predictions


• Improved bounds in terms of mean and variance of 
unknown distribution from which error is sampled

C(η) C(n)

η



learnedLLA:  Description
• At any time, partitioned into  actual LLAs 


• Each LLA is assigned contiguous ranks and slots that 
partition  and  respectively

ℓ P1, …, Pℓ

{1,…, n} {1,…, m}

# slots = 6 ⋅ # assigned ranks



learnedLLA:  Insert Idea
• If new insert's predicted rank agrees with pred and succ 

placement,  insert into LLA containing predicted rank


• If it conflicts with pred (succ), insert into the LLA of pred/succ  

# slots = 6 ⋅ # assigned ranks



learnedLLA:  Example Insert
•  is assigned to red LLA, but pred(  is stored in green LLA


• Insert  to green LLA


• If green LLA more than half full, merge with grey, orange, red

r̃(x) x)

x

# slots = 6 ⋅ # assigned ranks



learnedLLA:  Example Insert
•  is assigned to red LLA, but pred(  is stored in green LLA


• Insert  to green LLA


• If green LLA more than half full, merge with grey, orange, red

r̃(x) x)

x

# slots = 6 ⋅ # assigned ranks



•   LLA whose assigned ranks contain  


•  (resp )  LLA whose assigned ranks contain  (resp )


Insertion:


• If :  insert  into 


• Else if :  insert  into 


• Else:  insert  into 


• If LLA inserted to more than half full


• Merge with "sibling" LLA 

ix ← r̃x

ip is ← px sx

ip > ix x ip

is < ix x is

x ix

learnedLLA:  Insertion

Only case that uses 
the predicted rank

Idea:  Some element must have 
error  size of overfull LLA∝

Let blackbox LLA handle 
actual slot within



learnedLLA:  Analysis Idea
• Key lemma: If  is an actual LLA, then it contains some 

element  with high enough error:  


• 3x elements as # assigned ranks


• Some elem responsible for pushing others to this LLA

P
x ηx ≥ |P | /2

# slots = 6 ⋅ # assigned ranks



• Key lemma: If  is an actual LLA, then it contains some 
element  with high enough error:  


• 3x elements as # assigned ranks


• Responsible for pushing other elems to this LLA

P
x ηx ≥ |P | /2

learnedLLA:  Analysis Idea

Largest LLA size = O(η)

# slots = 6 ⋅ # assigned ranks



learnedLLA:  Analysis Idea
• Total cost = Relabels within LLAs + Relabels during merges

Dominated by cost of final LLAs Linear cost;  lower order term

# slots = 6 ⋅ # assigned ranks# slots = 6 ⋅ # assigned ranks



learnedLLA:  Analysis Idea
• Total cost = Relabels within LLAs + Relabels during merges

At most  amortized cost of each final 
LLA; all  partitioned across final LLAs

C(η)
n

# slots = 6 ⋅ # assigned ranks



Lower Bound Idea

• Easier to see that can't do better when  or 


• Question.  How to prove optimality for intermediate error?


• Idea.  Apply classic lower bound  [Bulánek Koucky Saks '12] to 

each  subproblems of size 


• Challenge.  Can't force big LLA to only use assigned slots

η = 0 η = n

n/η η

⋯

 subproblemsn/η



Experiments
• LearnedLLA outperforms PMA, APMA on numerous real data


• Inherits performance of APMA when using it as blackbox

Amortized cost

LLAs



Conclusion

• Learning-augmented framework provides a "worst case" way 
to reason about learned algorithms


• Only been applied to online algorithms/optimization problems


• Online list labeling structure was very amenable to this model


• Exciting future direction:   opportunity to exploit this model 
for other data structures 


• Main challenge:  what to predict and what not to predict


• E.g. how to handle insert + query workloads?


• Open problem from earlier:  How to tackle average case error?


