
Online List Labeling  
with Predictions

Joint work with

Samuel McCauley, Benjamin Moseley and Aidin Niaparast

Shikha Singh 

Williams College

Algorithms with Predictions

• Worst-case is analysis often too pessimistic

• Growing line of work to analyze beyond-worst case
performance of algorithms

• Focus on "instances we are more likely to see"

• Future instances look like the past

Algorithms with Predictions
Not necessarily complete

Data Structures with Predictions
Not necessarily complete

Challenge: Initially no unified theoretical
framework to reason about predictions

Learning-Augmented Model

• Introduced recently to give a general theoretical framework

for analyzing learned algorithms

• Design and Analysis Goal:

• Performance bounds as a function of error in prediction

• Do well on both extremes (perfect and totally erroneous)

• Degrade gracefully in between

• Essentially want low or no overhead of using predictions

• Binary search over a sorted array of numbers

• Worst case: time look up

n

O(log n)

Figure credit: Ben Moseley

Motivating Example [Kraska et al. SIGMOD '18]

Motivating Example [Kraska et al. SIGMOD '18]

• Train a predictor to predict ’s location in array based on

past data

• might be wrong, hopefully not too much

• “Warm start” your search at

• Repeatedly double until you find

•

r̃(x) x

r̃(x)

r̃(x)

x

r̃(x)

Figure credit: Ben Moseley

• Analysis: Define prediction error

• New lookup cost:

• (Best). Perfect prediction: cost

• (Worst). Completely erroneous:

• (Intermediate). Degrades gracefully with error

η = | r̃(x) − r(x) |

O(log η)

O(1)

O(log n)

r̃(x)

Figure credit: Ben Moseley

Motivating Example [Kraska et al. SIGMOD '18]

Problems Studied in this Model

• Applied to online algorithms [Lavastida Moseley Vassilvitskii '20]

• Warm-starting offline optimization problems

• Bipartite matchings [Dinitz Im Lavastida Moseley Vassilvitskii '21]

• Shortest paths [Chen Silwal Vakilian Zhang '22]

• Convex optimization [Sakaue Oki '22]

• Flows [Davies Moseley Vassilvitskii Wang '23]

Learned Data Structures Literature

Learned Replacements
of Data Structures

Learned Adaptations
of Data Structures

Learned indices:  
[Kraska Beutel Chi Dean Polyzotis ’18] & many

follow ups, learned hashing [Ferragina

Lehmann Sanders Vinciguerr '23], etc.

Learned BSTs
[Lin Luo Woodruff

'22]Learned filters
[Mitzenmacher '18]

& follow ups

Learned count-min sketch
[Hsu Indyk Katabi Vakilian '19]

Learned Data Structures Literature

Learned Replacements
of Data Structures

Learned Adaptations
of Data Structures

Learned indices:  
[Kraska Beutel Chi Dean Polyzotis ’18] & many

follow ups, learned hashing [Ferragina

Lehmann Sanders Vinciguerr '23], etc.

Learned BSTs
[Lin Luo Woodruff

'22]Learned filters
[Mitzenmacher '18]

& follow ups

Learned count-min sketch
[Hsu Indyk Katabi Vakilian '19]

Exciting empirical results; limited
analysis under assumptions

Exciting theoretical work;  
Input distribution learned; if robustness to

error present - reverts to worst case

Our Goal

Apply the new learning-augmented model to data structures

Focus on a fundamental data structures problem:

Online list labeling

Online List Labeling Problem

• items arrive one by one (from a totally ordered universe)

• Must be stored in sorted order in an array of size =

• Define label as 's slot in array

• Cost: Minimize # relabels (element movements) per insert

n

m cn

(x) x

1 m = 6ni

List Labeling Data Structure

• Insert() : must store it between and succ

• Might have to move things around to make room

x pred px sx

1 m = 6n

x

px sx

List Labeling Data Structure

1 m = 6n

• Insert() : must store it between and succ

• Might have to move things around to make room

x pred px sx

x

px sx

List Labeling Data Structure

• Insert() : must store it between and succ

• Might have to move things around to make room

• Must be careful: greedy approach per insert

x pred px sx

Ω(n)

1 m = 6n

cost = # relabels

"rebalance"

xpx sx

Why List Labeling?
• Fundamental building block in many data structures

• Cache-oblivious B trees [Bender Demaine Farach-Colton '00, Bender

Demaine, Iacono Wu '02, Brodal Fagerberg Jacob '02] etc.

• Graph data structures [Wheatman Burns '21, Wheatman Xu '18,

Wheatman Xu '21, Pandey Wheatman Xu Buluc '21] etc.

• Studied for over four decades under various names

• Sequential file maintenance [Willard '82, '86]

• Order maintenance [Dietz '82, Dietz Slator '87]

• Sparse tables [Itai, Konheim, Rodeh '81]

• Packed-memory arrays [Bender, Demaine, Farach-Colton '00]

• We call any data structure for this problem a list labeling array (LLA)

List Labeling: State of the Art
• Deterministic LLAs:

• amortized [Itai Konheim Rodeh '81] and worst-case LLA [Willard

'82, '86], simplified by [Bender Cole Demaine Farach-Colton Zito '02], [Katriel
'02], [Bender Fineman Gilbert Kopelowitz Montes '17]

• Best possible for deterministic LLAs [Bulánek Koucky Saks '12]

• Randomized LLAs:

• Recent breakthrough: expected amortized [Bender

Conway Farach-Colton Komlós Kuszmaul Wein '22] extends HI PMA
[Bender Berry Johnson Kroeger McCauley Phillips Simon Singh Zage '16]

• Specialized LLAs:

• Adaptive PMA [Bender Hu '07] and Rewired PMAs [DeLeo Boncz '19]

O(log2 n)

O(log3/2 n)

 lower bound [Bulánek Koucky Saks '13]Ω(log n)

List Labeling in Learned Indices

• Directly motivated by work on learned indices

• Back to the original motivation from [Kraska et al. 2018]

 
Learned

Index model

Sorted array

List Labeling in Learned Indices

• To support dynamic learned indices:

• Need to efficiently maintain a dynamic sorted array!

 
Learned

Index model

Sorted array

Need a Learned LLA!

Gapped Arrays
• Past work on learned indices used a greedy list labeling data

structure: a gapped array [Ding et al. SIGMOD '20]

• element movements per insert in worst case

• Assume uniform random insertions

• w.h.p. [Bender Farach-Colton Mosteiro '06]

Ω(n)

O(log n)

1 m = 6n

Main Question

• How to leverage the learning-augmented framework to

design a learned LLA that guarantees:

• Best possible performance on extremes: best & worst

predictions

• Performance degrades gracefully with error

η = 0 η = ∞

List Labeling Prediction Model

• elements arrive one by one

• For simplicity, ignore deletes for now

• Final rank of element is after all elements arrive

• Each insert arrives with a predicted rank

• Assigned adversarially based on past inserts/predictions

• Prediction error =

• Maximum error as

n

x r(x) n

x r̃(x)

ηx |r(x) − r̃(x) |

η = max ηx

List Labeling with Predictions

1 m = 6n

x

px sx

1 m = 6n

x

px sx

r̃x

Classical

Learned May disagree with
 or r̃(px) r̃(sx)

Know rank so far; final
rank is unknownrx

r̃x

Our Results
• [Today's talk] A Learned List Labeling Array that

• Uses existing worst-case LLAs as a blackbox

• Guarantees amortized cost where is the
amortized cost of black-box LLA

• Optimal for any error among deterministic LLAs

• Empirically outperforms state-of-the-art LLAs

• [Aside] Stochastic predictions

• Improved bounds in terms of mean and variance of
unknown distribution from which error is sampled

C(η) C(n)

η

learnedLLA: Description
• At any time, partitioned into actual LLAs

• Each LLA is assigned contiguous ranks and slots that
partition and respectively

ℓ P1, …, Pℓ

{1,…, n} {1,…, m}

slots = 6 ⋅ # assigned ranks

learnedLLA: Insert Idea
• If new insert's predicted rank agrees with pred and succ

placement, insert into LLA containing predicted rank

• If it conflicts with pred (succ), insert into the LLA of pred/succ

slots = 6 ⋅ # assigned ranks

learnedLLA: Example Insert
• is assigned to red LLA, but pred(is stored in green LLA

• Insert to green LLA

• If green LLA more than half full, merge with grey, orange, red

r̃(x) x)

x

slots = 6 ⋅ # assigned ranks

learnedLLA: Example Insert
• is assigned to red LLA, but pred(is stored in green LLA

• Insert to green LLA

• If green LLA more than half full, merge with grey, orange, red

r̃(x) x)

x

slots = 6 ⋅ # assigned ranks

• LLA whose assigned ranks contain

• (resp) LLA whose assigned ranks contain (resp)

Insertion:

• If : insert into

• Else if : insert into

• Else: insert into

• If LLA inserted to more than half full

• Merge with "sibling" LLA

ix ← r̃x

ip is ← px sx

ip > ix x ip

is < ix x is

x ix

learnedLLA: Insertion

Only case that uses
the predicted rank

Idea: Some element must have
error size of overfull LLA∝

Let blackbox LLA handle
actual slot within

learnedLLA: Analysis Idea
• Key lemma: If is an actual LLA, then it contains some

element with high enough error:

• 3x elements as # assigned ranks

• Some elem responsible for pushing others to this LLA

P
x ηx ≥ |P | /2

slots = 6 ⋅ # assigned ranks

• Key lemma: If is an actual LLA, then it contains some
element with high enough error:

• 3x elements as # assigned ranks

• Responsible for pushing other elems to this LLA

P
x ηx ≥ |P | /2

learnedLLA: Analysis Idea

Largest LLA size = O(η)

slots = 6 ⋅ # assigned ranks

learnedLLA: Analysis Idea
• Total cost = Relabels within LLAs + Relabels during merges

Dominated by cost of final LLAs Linear cost; lower order term

slots = 6 ⋅ # assigned ranks# slots = 6 ⋅ # assigned ranks

learnedLLA: Analysis Idea
• Total cost = Relabels within LLAs + Relabels during merges

At most amortized cost of each final
LLA; all partitioned across final LLAs

C(η)
n

slots = 6 ⋅ # assigned ranks

Lower Bound Idea

• Easier to see that can't do better when or

• Question. How to prove optimality for intermediate error?

• Idea. Apply classic lower bound [Bulánek Koucky Saks '12] to

each subproblems of size

• Challenge. Can't force big LLA to only use assigned slots

η = 0 η = n

n/η η

⋯

 subproblemsn/η

Experiments
• LearnedLLA outperforms PMA, APMA on numerous real data

• Inherits performance of APMA when using it as blackbox

Amortized cost

LLAs

Conclusion

• Learning-augmented framework provides a "worst case" way
to reason about learned algorithms

• Only been applied to online algorithms/optimization problems

• Online list labeling structure was very amenable to this model

• Exciting future direction: opportunity to exploit this model
for other data structures

• Main challenge: what to predict and what not to predict

• E.g. how to handle insert + query workloads?

• Open problem from earlier: How to tackle average case error?

