
GPU Architecture

CS371 Fall 2014
!

NVIDIA GeForce GTX 680 “Kepler” GPU Die

CS371: Computational Graphics - Prof. McGuire - 2014

Architecture Review

State

• Program Counter a.k.a. Instruction Pointer (“PC” or “IP”)

• [Stack pointer (“SP”), Base pointer (“BP”), Condition codes]

• General-purpose registers (“reg” or “GPR”)

• Fast, small memory (today: on-chip caches and local/shared memory)

• Slow, large memory (today: off-chip DRAM…and network and disk)

Generic Processor

ALU

Register File

Main
Memory

Instructions

Data

i$

d$

Decode & Dispatch

Processor

Control

$ = “cache”
ALU = Arithmetic Logic Unit

Goal: High Performance

(what is performance?)

Measuring Performance
Bandwidth: throughput

• 10 Mb/s network connection

• 1M pix/s rendered

• 400 Mrays/s cast

Latency: delay

Efficiency: energy consumption

Bandwidth: throughput

Latency: delay

• 30 ms delay between scan out and TV pixel changing

• 200 ms round-trip network ping (“lag”)

• 6 ms to render a shadow map

Efficiency: energy consumption

Measuring Performance

Bandwidth: throughput

Latency: delay

Efficiency: energy consumption

• 2 nJ to transmit a bit over WiFi

• 108 flops/W

• 140 nJ/pixel

See: Akenine-Möller and Johnsson, Performance per What?, Journal of Computer Graphics Techniques (JCGT),
vol. 1, no. 1, 37-41, 18 Oct. 2012. Available online http://jcgt.org/published/0001/01/03/

Measuring Performance

Plan #1:
!

High Clock Speed

Clock Scaling Ended in 2008

http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf

Plan #2:
Concurrency

Vocabulary

• Concurrent = overlapping in time

• Parallel = in lockstep

• Vector/SIMD = same instruction applied to a lot of data

…but, in practice, these words are often used interchangeably

A Carpool is Vector Parallel
a.k.a. “SIMD” or “Superscalar”

NVIDIA GeForce GTX 480

1 of 15 “SMs”

1 of 32 “cores”

GPU Vectorization
• Groups (“warps”) of ≈32 “threads” share a single instruction

pointer

• Amortizes instruction fetch and decode

• Amortizes adjacent memory fetch instructions

• Sets of ≈32 thread groups also round-robin on a single processor

• Hides memory fetch and some ALU latency

• Context swap is free

Vectorization Challenges

• If threads branch different ways, must execute both sides

• Must align memory access into simple patterns

• No speedup if there aren’t enough threads to fill a group/set

• Total threads limited by register count

An Escalator is a
Pipelined Elevator

GPU Pipelining
• New data from the CPU are being transferred to the GPU

while previous commands are queued for launch and others
are executing.

• One processor is transforming vertices of triangle 4 while
another rasterizing triangle 3, another is shading pixels of
triangle 2, and another is combining pixels from triangle 1
with the framebuffer

• One circuit is fetching instruction 7 while another is
decoding instruction 6 and another is executing instruction 5

Pipeline Challenges

• Bubbles

• Stalls

• Reordering

A Construction Crew
is Task Parallel

Task%parallel*processing*units*

Data%parallel*vector*lanes*
inside*each*unit*

Pipelining*within*ALUs*and*
through*recircula;ng*loop*

GPU Task Parallelism
• Multiple processing units (SMs/cores), each with its own

kernel and local memory

• Multiple chips on a single GPU

• Multiple GPUs (SLI/Crossfire) in a machine

• (CPU + GPU)

• Multiple machines on a network cluster

NVIDIA GeForce GTX 680

NVIDIA GeForce GTX 690

Multiprocessor Challenges

• Mutex synchronization is difficult (deadlocks, race
conditions)

• Memory transfers and cache management are expensive

• Less amortization than vectorization (but better
divergence management)

GPU Efficiency Sources
• Amortized of instruction fetch & decode

• Large floating-point ALU

• Barrier synchronization & atomics

• Large register banks

• Fixed-function rasterization

• Relatively high memory bandwidth

Current GPU Quirks
• FMUL: floating point multiply + add is a single

instruction

• Conditional operations are “free”

• Float32 is faster than integer and boolean

• Float32 is much faster than float64

• Caches are smaller and relatively slower than CPUs (in
register is great, local memory falls off a lot, and global
memory is slow)

How to write
fast GPU code

Minimize CPU Sync

• Every state change or draw call forces CPU-GPU
synchronization, stalling one or both

• Drivers max out around 1000 calls/frame

• This is a little better on console and will be much better
in a year on PC & mobile

Minimize GPU Sync

• Avoid data hazards (adjacent passes that depend on each
other)

• Avoid explicit synchronization

• Lock contexts to GPUs for peak multi-GPU performance

Maximize Occupancy

• Small iteration bounds (triangles) leave warps partially filled

• Threads that discard leave warps partially filled

!

• High peak register counts leave SMs partially filled

Minimize Divergence

if (x > 3.0) {
 y = 6.0 + x;
} else {
 y = 10.0;
}

y = float(x > 3.0) * (x - 4.0) + 10.0

Slow Fast

(Execution)

Minimize Divergence

c = texelFetch(T, texelFetch(L, ivec2(gl_FragCoord.xy)).xy, 0);

Slow

Fast

(Memory)

c = texelFetch(T, ivec2(gl_FragCoord.xy), 0);

Use Fast Operations

• if, while, switch

• sqrt, division, log, exp

• int, bool, double

• min, max, clamp

• x * a + b

• b = t ? c : a

• float

Slow Fast

Minimize Bandwidth

throughput = min(memory / bandwidth,

 compute / aluRate)

GLSL & HLSL Gotchas
• GLSL & HLSL are substitution interpreters…they inline everything

• Small, fixed-length loops unroll completely

• Branches on compile-time constants are free

• Dead code is free

• No recursion allowed (but you can build your own stack)

• No function pointers (and no classes or methods)

• Computed array indices are relatively slow (can’t relative index registers)

• Memory allocation is extremely slow

• Can’t store textures in arrays or structures

• These are language quirks, not GPU architecture limitations

