NVIDIA GeForce GTX 680 “Kepler” GPU Die

Lo
. 15
‘!
. : Vi
: " ‘!
¥ -
iy H
P
Y H
= H

GPU Architecture

CS371: Computational Graphics - Prof. McGuire - 2014

Architecture Review

State

« Program Counter a.k.a. Instruction Pointer (“PC” or “IP”)

- [Stack pointer (“SP”’), Base pointer (“BP”’), Condition codes]

+ General-purpose registers (“reg” or “GPR”)

- Fast, small memory (today: on-chip caches and local/shared memory)

+ Slow, large memory (today: off-chip DRAM...and network and disk)

GGeneric Processor

Control

Instructions
—’m_’ Decode & Dispatch

Data

ds —= Register File

'

Processor

$ = “cache”
ALU = Arithmetic Logic Unit

Goal: High Performance

(what is performance?)

Measuring Performance

Bandwidth: throughput

10 Mb/s network connection
IM pix/s rendered

400 Mrays/s cast

Latency: delay

Efficiency: energy consumption

Measuring Performance

Bandwidth: throughput

Latency: delay

30 ms delay between scan out and TV pixel changing
200 ms round-trip network ping (“lag”)

6 ms to render a shadow map

Efficiency: energy consumption

Measuring Performance

Bandwidth: throughput
Latency: delay

Efficiency: energy consumption

2 nJ to transmit a bit over WiFi
108 flops/W

140 nJ/pixel

See: Akenine-Moller and Johnsson, Performance per What?, Journal of Computer Graphics Techniques (JCGT),
vol. 1, no. 1, 37-41, 18 Oct. 2012. Available online http://jcgt.org/published/0001/01/03

Plan #1:

High Clock Speed

Clock Scaling Ended in 2008

35 YEARS OF MICROPROCESSOR TREND DATA

7 - . . . , . . , \ 4
10 ¢ : : : : : : : . _+7. Transistors
C - : : ; ' : ' ' (thousands)
6 f
10°
5 |
10° .
i . Single-thread
4l . Performance
10 ~ (SpecINT)
30 . Frequency
10 ~ (MHz)
2 : : Typical Power
10 -1 (Watts)
1 : - Number of
10 - Cores

I = N S R R
1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf

Plan #2;
Concurrency

Vocabulary

- Concurrent = overlapping in time

- Parallel = 1n lockstep

 Vector/SIMD = same instruction applied to a lot of data

...but, in practice, these words are often used interchangeably

a.k.a. “SIMD” or “Superscalar”

' NVIDIA GeForce GTX 480

ry §
KT

LS

R

TS

Y i L]
e L
L]
L]
Execution contexts
(128 KB)
“Shared” memory
(16+48 KB)

1 of 15 "SMs”

GPU Vectorization

« Groups (“warps”) of =32 “threads” share a single instruction
pointer

- Amortizes instruction fetch and decode
- Amortizes adjacent memory fetch instructions

« Sets of =32 thread groups also round-robin on a single processor
- Hides memory fetch and some ALU latency

- Context swap 1s free

Vectorization Challenges

- If threads branch different ways, must execute both sides
- Must align memory access 1nto simple patterns
+ No speedup if there aren’t enough threads to fill a group/set

- Total threads limited by register count

GPU Pipelining

- New data from the CPU are being transferred to the GPU
while previous commands are queued for launch and others
are executing.

One processor 1s transforming vertices of triangle 4 while
another rasterizing triangle 3, another 1s shading pixels of
triangle 2, and another 1s combining pixels from triangle 1
with the framebuffer

* One circuit 1s fetching instruction 7 while another 1s
decoding 1nstruction 6 and another is executing instruction 5

Pipeline Challenges

- Bubbles
- Stalls

+ Reordering

Input Assembler

Host

v

Data-parallel vector lanes
inside each unit

Thread Execution Manager

Pipelining within ALUs and
through recirculating loop

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Da
Cache

an ANN

Hrecure

L, NN
(1] Texturep

L1, NN
(1] Texturep

== Texture! ==

1.l ANN
{1 Texturel

AR oleded
(1 Texturep

Hrocure-

Task-parallel processing units

/

GPU Task Parallelism

- Multiple processing units (SMs/cores), each with its own

kernel and local memory

+ Multiple chips on a single GPU

- Multiple GPUs (SLI/Crossfire) in a machine

- (CPU + GPU)

» Multiple machines on a network cluster

NVIDIA GeForce GTX 680

S
A
8
3
4
=
-
A
£
a
-
w

Memory Controfler

20N focwey

Mameory Contreller

NVIDIA GeForce GTX 690

PCl Express 3.0 Host Interface PCl Express 3.0 Host Interface

Nnpogeon Acwow
Npogeesn owew

.
=
£
€
-
o
=
&
3
<
>

Swewy
Sweyy

Memary Controlier
Memary Controlier

Jegonuoy Ax
Jgonuo Ax

Multiprocessor Challenges

+ Mutex synchronization 1s difficult (deadlocks, race
conditions)

- Memory transfers and cache management are expensive

-+ Less amortization than vectorization (but better
divergence management)

GPU Efficiency Sources

- Amortized of instruction fetch & decode
- Large floating-point ALU

- Barrier synchronization & atomics

- Large register banks

- Fixed-function rasterization

- Relatively high memory bandwidth

Current GPU Quirks

- FMUL.: floating point multiply + add 1s a single
instruction

- Conditional operations are “free”

- Float32 1s faster than integer and boolean

- Float32 1s much faster than float64

+ Caches are smaller and relatively slower than CPUs (in
register 1s great, local memory falls off a lot, and global
memory is slow)

How to write
fast GPU code

Minimize CPU Sync

- Every state change or draw call forces CPU-GPU

synchronization, stalling one or both

* Drivers max out around 1000 calls/frame

- This 1s a little better on console and will be much better

in a year on PC & mobile

Minimize GPU Sync

- Avoid data hazards (adjacent passes that depend on each
other)

- Avoid explicit synchronization

- Lock contexts to GPUs for peak multi-GPU performance

Maximize Occupancy

-+ Small iteration bounds (triangles) leave warps partially filled

- Threads that discard leave warps partially filled

- High peak register counts leave SMs partially filled

Minimize Divergence

(Execution)

Slow Fast

if (x > 3.0) { y = float(x > 3.0) * (x - 4.0) + 10.0
y =60.0 + X;

} else {

y = 10.0;
}

Minimize Divergence

(Memory)

Slow

c = texelFetch(T, texelFetch(L, ivec2(gl_FragCoord.xy)).xy, 0O);

Fast

c = texelFetch(T, ivec2(gl_FragCoord.xy), 0);

- 1f, while, switch

- sqrt, division, log, exp

Use Fast Operations

Slow Fast

* min, max, clamp

- X*a+b

+ int, bool, double *b=t?c:a

- float

Minimize Bandwidth

throughput = min(memory / bandwidth,

compute / aluRate)

GLSL & HLSL Gotchas

« GLSL & HLSL are substitution interpreters...they inline everything

+ Small, fixed-length loops unroll completely

+ Branches on compile-time constants are free

+ Dead code is free

+ No recursion allowed (but you can build your own stack)

» No function pointers (and no classes or methods)

« Computed array indices are relatively slow (can’t relative index registers)
« Memory allocation is extremely slow

- Can’t store textures in arrays or structures

+ These are language quirks, not GPU architecture limitations

