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GPU Architecture

CS371: Computational Graphics - Prof. McGuire - 2014



Architecture Review



State

« Program Counter a.k.a. Instruction Pointer (“PC” or “IP”)

- [Stack pointer (“SP”’), Base pointer (“BP”’), Condition codes]

+ General-purpose registers (“reg” or “GPR”)

- Fast, small memory (today: on-chip caches and local/shared memory)

+ Slow, large memory (today: off-chip DRAM...and network and disk)
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Goal: High Performance

(what is performance?)



Measuring Performance

Bandwidth: throughput

10 Mb/s network connection
IM pix/s rendered

400 Mrays/s cast

Latency: delay

Efficiency: energy consumption



Measuring Performance

Bandwidth: throughput

Latency: delay

30 ms delay between scan out and TV pixel changing
200 ms round-trip network ping (“lag”)

6 ms to render a shadow map

Efficiency: energy consumption



Measuring Performance

Bandwidth: throughput
Latency: delay

Efficiency: energy consumption

2 nJ to transmit a bit over WiFi
108 flops/W

140 nJ/pixel

See: Akenine-Moller and Johnsson, Performance per What?, Journal of Computer Graphics Techniques (JCGT),
vol. 1, no. 1, 37-41, 18 Oct. 2012. Available online http://jcgt.org/published/0001/01/03



Plan #1:

High Clock Speed



Clock Scaling Ended in 2008

35 YEARS OF MICROPROCESSOR TREND DATA
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf



Plan #2;
Concurrency



Vocabulary

- Concurrent = overlapping in time

- Parallel = 1n lockstep

 Vector/SIMD = same instruction applied to a lot of data

...but, in practice, these words are often used interchangeably



a.k.a. “SIMD” or “Superscalar”
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GPU Vectorization

« Groups (“warps”) of =32 “threads” share a single instruction
pointer

- Amortizes instruction fetch and decode
- Amortizes adjacent memory fetch instructions

« Sets of =32 thread groups also round-robin on a single processor
- Hides memory fetch and some ALU latency

- Context swap 1s free



Vectorization Challenges

- If threads branch different ways, must execute both sides
- Must align memory access 1nto simple patterns
+ No speedup if there aren’t enough threads to fill a group/set

- Total threads limited by register count






GPU Pipelining

- New data from the CPU are being transferred to the GPU
while previous commands are queued for launch and others
are executing.

One processor 1s transforming vertices of triangle 4 while
another rasterizing triangle 3, another 1s shading pixels of
triangle 2, and another 1s combining pixels from triangle 1
with the framebuffer

*  One circuit 1s fetching instruction 7 while another 1s
decoding 1nstruction 6 and another is executing instruction 5



Pipeline Challenges

- Bubbles
- Stalls

+ Reordering
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GPU Task Parallelism

- Multiple processing units (SMs/cores), each with its own

kernel and local memory

+  Multiple chips on a single GPU

- Multiple GPUs (SLI/Crossfire) in a machine

- (CPU + GPU)

»  Multiple machines on a network cluster
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Multiprocessor Challenges

+ Mutex synchronization 1s difficult (deadlocks, race
conditions)

- Memory transfers and cache management are expensive

-+ Less amortization than vectorization (but better
divergence management)



GPU Efficiency Sources

- Amortized of instruction fetch & decode
- Large floating-point ALU

- Barrier synchronization & atomics

- Large register banks

- Fixed-function rasterization

- Relatively high memory bandwidth



Current GPU Quirks

- FMUL.: floating point multiply + add 1s a single
instruction

- Conditional operations are “free”

- Float32 1s faster than integer and boolean

- Float32 1s much faster than float64

+ Caches are smaller and relatively slower than CPUs (in
register 1s great, local memory falls off a lot, and global
memory is slow)



How to write
fast GPU code



Minimize CPU Sync

- Every state change or draw call forces CPU-GPU

synchronization, stalling one or both

* Drivers max out around 1000 calls/frame

- This 1s a little better on console and will be much better

in a year on PC & mobile



Minimize GPU Sync

- Avoid data hazards (adjacent passes that depend on each
other)

- Avoid explicit synchronization

- Lock contexts to GPUs for peak multi-GPU performance



Maximize Occupancy

-+ Small iteration bounds (triangles) leave warps partially filled

- Threads that discard leave warps partially filled

- High peak register counts leave SMs partially filled



Minimize Divergence

(Execution)

Slow Fast

if (x > 3.0) { y = float(x > 3.0) * (x - 4.0) + 10.0
y =60.0 + X;

} else {

y = 10.0;
}



Minimize Divergence

(Memory)

Slow

c = texelFetch(T, texelFetch(L, ivec2(gl_FragCoord.xy)).xy, 0O);

Fast

c = texelFetch(T, ivec2(gl_FragCoord.xy), 0);



- 1f, while, switch

- sqrt, division, log, exp

Use Fast Operations

Slow Fast

* min, max, clamp

- X*a+b

+ int, bool, double *b=t?c:a

- float



Minimize Bandwidth

throughput = min(memory / bandwidth,

compute / aluRate)



GLSL & HLSL Gotchas

« GLSL & HLSL are substitution interpreters...they inline everything

+ Small, fixed-length loops unroll completely

+ Branches on compile-time constants are free

+ Dead code is free

+ No recursion allowed (but you can build your own stack)

» No function pointers (and no classes or methods)

« Computed array indices are relatively slow (can’t relative index registers)
« Memory allocation is extremely slow

- Can’t store textures in arrays or structures

+ These are language quirks, not GPU architecture limitations



