CS 371 Project 6:
Real-Time Graphics

Figure 1: Video game scene rendered at 60 fps on the GPU with dynamic lighting
and shadows using vertex and pixel shaders.

1 Introduction

Realistic video game graphics must deliver an approximation of physics within a
hard time budget of 15 to 35 ms. The rasterization algorithm and massive con-
currency in the graphics pipeline makes this possible. Adapting physically based
rendering from a ray tracing context to this hardware rasterization context means
rethinking the algorithms and tradeoffs within them. It also requires learning to
work with low-level tasks like GPU memory management, run-time compilation,
and managing graphics card state. In this project you’ll do all of these, building a
complete rendering system suitable for a video game given the model loading and
application infrastructure that we’ve built throughout the semester.

In addition to creating a real-time renderer for next Monday’s deadline, you're
also going to create a specification for the following week’s project. This is an
opportunity to practice what you learned about scheduling and designing during
the midterm project.

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

1.1 Educational Goals
1. Apply physically-based rendering in a hardware rasterization context

(a) Vertex shader transformation from object to world to camera to projective
screen space

(b) Pixel shader BSDF implementation

(c) Light visibility determination via the shadow mapping algorithm [Williams
1978]

(d) Gain experience developing software for a constrained, embedded envi-
ronment

(e) Work with functional, massively-concurrent, pipelined programming

2. Analyzing and improving the development process

(a) Scoping and managing complexity

(b) Effective visual communication of results

1.2 Schedule

Out: Wednesday, October 31
Checkpoint (sec. 2.1): Thursday, November 1, 2:30 pm
Specification Exercise (sec. 2.2): Monday, November 5, 12:00 pm (in class)
Due: Monday, November 5, 12:00 pm (SVN)

This is a moderately challenging, individual project that builds on last week’s
GPU-programming tutorial. It will form the basis for next week’s interactive graph-
ics project. As a reference, my implementation contained 9 files, 420 statements,
and 300 comment lines as reported by iCompile.

You’ve already seen that debugging in the presence of the multiple languages,
flakey compilers, and poor specifications associated with OpenGL and GLSL can
be time consuming. That’s part of life as a graphics (or any systems...) programmer,
and it is the same under pretty much every graphics development environment.

This is where it is important to employ the software engineering practices that
you learned earlier in the course. Minimize state. Make your program look as
much like the math as possible. Test frequently. Commit after every major step.
Use assertions. Read the documentation carefully. Look at the source code inside
library routines. Avoid language features that you don’t understand.

Once you get your programming running, you still have to debug it. You aren’t
going to be able to print or even run the debugger on the GPU. So you have to devise
ways of testing your hypotheses about what is wrong with the program using only
one color per pixel as your output. See the debugging chapter of Shirley et al. for a
good discussion of graphics debugging techniques.

Beware that the shadow map implementation will require the fewest lines of code
of any element of the specification, but requires the most thought and is nearly
impossible to debug unless you understand the math. Plan accordingly! There’s no
reason you have to complete the specification in the order that I wrote it.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Remember to scope your work appropriately and reserve a substantial portion of
time for the post-production work of creating the report and images.

1.3 Rules/Honor Code

You are encouraged to talk to other students and share strategies and programming
techniques. You should not look at any other student’s code for this project or use
code from other external sources except for the G3D library and code from your
textbooks.

During this project, you may use any part of the G3D library and look at all of
its source code, including sample programs. I encourage you to look at the shader
sample programs and the implementation of UniversalSurface in the
data-files/UniversalSurface/UniversalSurface_x files (although be-
ware that they are much more complicated than what you have to implement!)

You may share data files and can collaborate with other students to create test and
visually compelling scenes. If you share a visually compelling scene with another
student, ensure that you use different camera angles and lighting or make other
modifications to distinguish your image of it.

After Monday, Nov. 5 at 12 pm, you may not modify the specification.dox
file or image files related to it in your project 7 directory without my prior approval
for your specific edits.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

2 Specification

By this point in the course, you don’t need me to tell you how to write a report.
Provide one for this project as usual, emphasizing the results that demonstrate cor-
rectness (since there are few design decisions required). You needn’t include a
‘feedback’ section this week—everyone’s workflow is pretty solid now.

1. Create a scene with a Quake 3 level, a spot light, and an appropriate sky cube
map.

2. Implement object-to-world transformation and perspective projection in a vertex
shader, and show a normal-vector visualization as evidence of correctness, €.g.,
Figure 3.

3. Model the sun as a shadow-casting spot light in a pixel shader, and show a
shading-only image (i.e., no texture) as evidence of correctness, e.g., Figure 5.

4. Implement a Lambertian BSDF in a pixel shader, and show a texture only (no
lighting) image as evidence of correctness, e.g., Figure 4.

5. Implement environment map diffuse lighting, and show before and after images
as evidence of correctness, e.g., Figures 6 and 7.

6. Implement shadow mapping and show an image as evidence of correctness, e.g.,
Figure 8.

7. Decorate your scene with animated character models (e.g., MD2 models) and
other non-animated props, and render a fly-through video using a smooth camera
spline. The video must be relatively short and less than 2 MB for SVN to allow
you to submit it. Try targeting 640 x 480 for at most 20 seconds.

8. Answer the following questions. As always, you’ll get the most out of the lab if
you think about these deeply. They primarily are chosen to lead you to interest-
ing conclusions, not to test your knowledge.

(a) Explain the algorithm implemented by Listing 3.3. Why does the result
produce lighting comparable to treating every sky pixel as a light source if
it uses only a small number of directions (make an argument with mathe-
matics, starting from the rendering equation)? What is the max expression
for in each line? Why did I use MIP level 9.0?

(b) Explain why switching to front face culling for the shadow map gives cor-
rect results at all, and why it also allows us to reduce the bias magnitude
compared to back face culling.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

(c) Describe how you would extend the system to handle multiple lights rea-
sonably efficiently. Note that the current system assumes that all lights
affect all objects, and computes bounds for the Quake 3 levels in a rela-
tively ineffective way under spot lights.

(d) Explain in a mathematically rigorous way why you can perform the shadow
map projection before interpolation, in the vertex stage, and get the same
result as if you projected in the pixel shader after interpolation of position
across the triangle.

Like the example images in the following section, all of your images should have
the same aspect ratio, be from the same viewpoint, and be uncluttered by the GUI.
Choose your viewpoint so that it illustrates each of the features well, and use your
knowledge of art composition to make the images interesting.

In addition, you must submit the checkpoint report, post-mortem evaluation on
the midterm, and project 6 specification exercise described in the subsequent sec-
tions.

Your repository directory for this project is:

svn://graphics—-svn.cs.williams.edu/371/6-RealTime/realtime—-<username>

2.1 Checkpoint (due Thursday, Nov. 1, 2:30 pm)

1. Create a report draft, including placeholder images and a very tiny sample
video of a fly-through of a Quake scene that was actually recorded from
your program.

2. Write the code to compute the shadow map (but not render shadows using it),
including computing all of the input that it needs. It is OK if this doesn’t run,
but it should be a few typos away from correct, not missing whole variables.

2.2 Specification Exercise (due Monday 12:00 pm in SVN and hardcopy)

Work with your project 7 (i.e., next week’s) group to write a specification for
project 7, as described below, and commit it as specification.dox in the root
directory of your project 7 directory. Note that you can schedule time with your
future partners but should not actually begin work on the implementation before
Tuesday.

This Thursday at the start of lab, I’'m going to give you a specification for next
week’s project and enable your SVN directory for that project . You won’t imple-
ment that specification this week. Instead, you’ll have until Monday to work with
your project 7 group to revise that specification and submit it. The following week,
you’ll implement your own revised specification. You can renegotiate it with me
during the week as well, but I'm more amenable to changes before work starts.

The goal of this exercise is to practice scoping work in preparation for creating
your final project specification. I'll evaluate your project 7 work based on your own
specification, taking into consideration both how much you accomplished and how
well you accomplished it.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Your task this week is to select the features that will give you the best educa-
tional value and presentation potential for your limited development time. Avoid
the point of diminishing returns, where you need a lot more time to produce mini-
mal value. Focus on elements that give either proportional value for your time, or
better yet, where a small amount of work gives a large payoff.

Choose your own partner(s) for project 7. You may work in a group of 1-4
people. As always, I take the number of people into account when evaluating your
work.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

3 Implementation Advice

3.1 Modeling

Begin with the (latest) default G3D starter project, which iCompile will produce for
you. Turn down the rendering rate to something reasonable, like setDesiredFrameRate (60).

Modify your scene to contain only point lights and to load a Quake 3 level.

Choose a Quake 3 scene for which there are large areas open to the sky so that
you can initially have a single source that is the sun. You can use any of the levels
provided in G3D or download your own from your favorite mod (there are hundreds
online!) Note that you can use the G3D viewer program to preview these without
writing any code. (It doesn’t use ArticulatedModel to load them, so you can’t
follow its source, however.)

The textures will be missing for many Quake maps. You can see the names of
the textures that are missing in your log.txt file. If you create textures with the
appropriate names you can trick G3D into loading them instead of leaving those
areas white. You can also grab one of the many open source Quake texture packs
and put it on your computer to avoid the problem.

3.2 Shading

Replace 2pp: :onGraphics3D with your own code to explicitly render the in-
dexed triangle lists stored within the UniversalSurface: : GPUGeoms of the surface
array. You will have to downcast each shared_ptr<Surface>toashared_ptr<UniversalSurface>
to access its geometry.
Create a direct illumination shader. Initially have it just set the color of each
pixel based on the normal so that you can debug your transformations:

#version 120 // —%— c++ —%-—
/*+ \file direct.vrtx/

attribute vec3 positionlIn;
attribute vec3 normalln;
attribute vec2 texCoordIn;

/*x World space normal x/
varying vec3 nj;

/** World space point being shaded x/
varying vec3 X;

void main () {
X = ?2?2?;

n = 7277;

gl_Position = ??7?;

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

#version 120 // —%— c++ —%-—
/+x \file direct.pix =/

/** Interpolated world space normal [not unit length] =x/
varying vec3 n;

/** World space point being shaded x/
varying vec3 X;

void main () {
n = normalize (n);
gl_FragData[0].rgb = n « 0.5 + vec3(0.5);

You must complete the “? 722" sections yourself following the G3D documenta-
tion and your notes from last week’s tutorial.

Once you know the transformation is correct, also pass the texture coordinate
from the vertex shader to the pixel shader.

Now pass the Lambertian BSDF material property of each GPUGeom to the shader.
The constant is a vec4 in GLSL (red, green, blue, and alpha-coverage). The texture
has type sampler2D in GLSL. Because it can be NULL in C++, use
Texture::whiteIfNull to ensure that you never pass a NULL pointer to the
GPU. For now, skip the glossy and other terms. You can optionally implement
them later if you like (see data/UniversalSurface_render.pix to see the
unpacking algorithm for the glossy part—it is somewhat complicated.) Render each
surface using its Lambertian component (the product of the texture map sample and
the constant) as a debugging step.

Pass the world-space position of the light to your shader. Use this to compute the
direct illumination at each point. The code should look exactly like your ray tracer,
except using GLSL syntax instead of G3D/C++ syntax. Your GLSL code is going
to look almost the same as your code from the early versions of the ray tracer.

Remember to check your units—the final output from the pixel shader should have
radiance units.

3.3 Environment Lighting

You’ll notice that the back sides of objects are very dark. That’s because we have
no model of indirect lighting. The “environmentMap” cube map is used to approx-
imate indirect lighting. It is a picture of that ideally represents what you would see
if you stood in the center of the scene. That is, it is Li, (X, wj) for some fixed point
X.

To get true indirect lighting from an environment map, we’d need a different and
correct environment map for every single point in the scene. We’d also have to
consider incident light from all possible directions (these cube maps tend to be at
least 512 x 512 pixels for each of 6 faces, so that’s a lot of directions to handle!)

We can use a really cheap approximation, however. The lowest MIP level is
an average of a large number of directions. If we assume that the cube map is a
constant, we can directly integrate over the hemisphere. If we assume that it is

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

piecewise constant, we can perform a really coarse approximation by just consid-
ering the six directions that represent the faces.
My C++ code to pass the environment map to my shader is:

args.setUniform("environmentConstant",
m_scene->1ighting () ->environmentMapConstant) ;

args.setUniform("environmentMap",
Texture::whiteCubeIfNull (m_scene->lighting()->environmentMapTexture));

The environmentMap has GLSL type samplerCube and is typically read using
textureCube (sampler, direction). We want to force a low MIP map, so
use textureCubeLod (sampler, direction, 9.0) fora 512 x 512 texture.
My sampling code looks like:

vec3 E_ambient = environmentConstant =*
(max (0.0, n.y) % textureCubelLod(environmentMap, vec3(0.0 . .
max (0.0, -n.y) #* textureCubelod(environmentMap, vec3(0.0, -1.0, 0.0), 9.0)
<)

.rgb +
.rgb +

3.4 Creating a Shadow Map

The G3D Scene includes a Lighting member, and that has a lightArray field of
Lights...and those have shadow map members. If you ensure that your scene has a
single shadow-casting light, then you can extract the ShadowMap from it and never
create one on your own. Recall from Friday’s sample midterm presentation that a
shadow map is the depth buffer from a camera placed at the light. The G3D shadow
map class abstracts the rendering of that depth buffer—it looks essentially the same
as the code you’ve already written, and you can examine the G3D source code to
see how it does so very efficiently. You don’t have to write much code to create
the shadow map’s depth map each frame-it is mostly abstracted in G3D for you
because it isn’t very interesting. However, you need to use that depth map to create
the shadows in your direct illumination from the viewer’s point of view. That’s the

interesting part, and it will appear in your pixel shader. e

The first step is visualizing the shadow map so that you can debug. Create a Shadow Mep (204 dopts?)
GuiTextureBox for viewing the ShadowMap: :depthTexture (), as shown in
Figure 2. The shadow map is created for you as a field of each shadow-casting
Light specified in the .scn.any file. Note that you can set the texture used by '
a GuiTextureBox after it is created—so you might create the texture box inside y
App: :makeGUI, but not actually set it to display anything until App: : loadScene, A e @R

when the lights are created for you by the scene loader. o B v

Every frame, compute the shadow map from your scene (you obviously must do
this before you attempt to shade the scene!) ShadowMap: : updateDepth requires
several arguments describing the scene and the orientation of the virtual camera
placed at the light source. The ShadowMap class also contains static helper meth-
ods for computing these. You can see an example of their use in Surface. cpp.

visualization.

When you update the shadow map depth, reduce the bias to a small number, Surface
like 0.0 f, and specify RenderDevice: : CULL_FRONT for the cull face. The latter

http://graphics.cs.williams.edu/courses/cs371

Figure 2: Debugging
GUI with shadow map

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

inverts the normal backface removal: front faces will be ignored and back faces
will be drawn.

3.5 Using a Shadow Map

When you have computed a shadow map that looks reasonable, pass the shadow
map and the light’s (biased) view and projection matrix to the shader using some-
thing like:

args.setUniform("shadowMap",
light->shadowMap () —>depthTexture ()) ;

args.setUniform("lightBiasedModelViewProjectionMatrix",
light->shadowMap () —>biasedLightMVP ()) ;

In your direct illumination shader, the shadow map has GLSL type sampler2DShadow.

The GLSL function shadow2D (sampler, P) returns a color as a vec4, but
only the first element (r) is useful. The interpretation is that it is 1.0 if the point is
visible to the light (i.e., lit) and 0.0 if the point is not visible (i.e., shadowed). It is
a value between 1.0 and 0.0 if the point is partly shadowed. So you can just scale
the light’s power by this value at each pixel to create shadows.

The shadow2D call computes its result under specific assumptions about the
P argument. It assumes that texture coordinate (P.x, P.y) in the shadow map
that is the projection of the point being shaded under the virtual camera that we
previously placed at the light source. It assumes that P.z represents the same
point’s distance along the light’s “view vector” as encoded in a funny way by the
projection matrix. That funny encoding is described in the OpenGL manual under
gluPerspective and in your textbook. The basic idea is that P . z is on the range
[0, 1], where O means “close to the light” and 1 means “far from the light”, and the
scaling is hyperbolic between them.

The key idea is that we don’t care about the particular scaling of P. z...we just
care that the same scaling previously happened when rendering the shadow map.
So if P. z is greater than the value in the shadow map, then our world-space point
X is farther from the light than some other surface and is in shadow. Otherwise it
is the first surface seen by the light and is lit. shadow2D performs that comparison
for us, so we just need the result.

But how do you compute P.z? It is the projection of X into the virtual light-
camera’s screen space...including the homogeneous division sothatp.w = 1. (You
don’t need to pass a vec4 to shadow2D; I'm just making the point because it is
important to both the math and the computation you go through to produce p.) This
is a complicated way of leading you to write two lines of code, but those two lines
require a lot of thought and will probably require you to go back and read up on
projection matrices again.

Finally, performing this projection in the pixel shader means that we’re perform-
ing a matrix product at every pixel. The 4 x 4 matrix product (but not the division)
can actually be lifted up to the vertex shader. You can optimally make that trans-
formation to your code. Note the optional specification question asking why this
transformation preserves correctness.

http://graphics.cs.williams.edu/courses/cs371

10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Figure 5: Visualization of shading with BSDF disabled.

http://graphics.cs.williams.edu/courses/cs371

11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Figure 8: Lighting with shadows. Note that the ambient light colors the shadowed
regions.

http://graphics.cs.williams.edu/courses/cs371

12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

References

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. SIGGRAPH Comput. Graph. 12, 3, 270-274.
2

http://graphics.cs.williams.edu/courses/cs371

13

http://graphics.cs.williams.edu/courses/cs371

	Introduction
	Educational Goals
	Schedule
	Rules/Honor Code

	Specification
	Checkpoint (due Thursday, Nov. 1, 2:30 pm)
	Specification Exercise (due Monday 12:00 pm in SVN and hardcopy)

	Implementation Advice
	Modeling
	Shading
	Environment Lighting
	Creating a Shadow Map
	Using a Shadow Map

