
CS 371 Project 0:

Cubes

Figure 1: A dog modeled with translated, rotated, and scaled cubes. By the end of
this project you’ll know how to create scenes like this programmatically and write
an interactive real-time 3D renderer for viewing them.

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Educational Goals . 2
1.3 Schedule . 3
1.4 Honor Code & Rules . 3

2 Specification 3
2.1 Report . 5

3 Evaluation Process and Metrics 7

4 Walkthrough 9
4.1 Command Line C++ Programming on OS X 9
4.2 Graphics Programming with G3D::GApp 13
4.3 Draft Report . 17
4.4 One Cube . 20
4.5 The Cornell Box . 23
4.6 A Custom Scene . 24
4.7 Complete the report and submit 25

5 The Gallery 25

CS371 2010 | PROJECT 0: CUBES

1 Introduction

1.1 Overview
Welcome to your first CS371 Project! In this project you’ll write a C++ program
that displays a set of 3D cubes, make an interesting scene data file for it, and then
write a short report. The code that you write this week will be the starting point
for the new project next week, so take care to structure the program in a flexible
manner and be sure to document your source clearly.

For the other projects this semester, you will read the specification and start
work before scheduled lab. This project is unique. We’re going to go through
the handout and begin implementation together during the first lab session. This
project also introduces a number of tools and libraries that may be new to you. For
those reasons, the handout is long. It explicitly walks you through most of the steps
in the project. As you progress through the course you will learn to work directly
from a technical specification, primary research sources, and reference documents,
so you’ll need less direction and detail in the handouts.

Note that I hyperlinked the section numbers, figure numbers, citations, and URLs
in this document to help you navigate quickly in the PDF version. You should
return the favor by structuring your project documentation with links like
this, most of which will be done for you by Doxygen if you follow the formatting
guidelines.

1.2 Educational Goals
In this project, you’ll gain familiarity with:

1. Some 3D modeling conventions:

(a) Coordinate system and units

(b) Positioning objects in 3D space

(c) A first-person camera controller

(d) The Model/Entity/Surface design pattern

2. Some CS371 software development tools:

(a) The C++ programming language

(b) The Subversion (svn) revision control system

(c) The G3D library and iCompile script

(d) The Doxygen documentation generation program

3. Programming in the large:

(a) Automatic memory management

(b) Overview documentation

(c) Entry point documentation

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

1.3 Schedule

Out: Thursday, September 6
Due: Monday, September 10, 12:00 pm (noon)

This is an easy, individual project. Most projects in CS371 will be more chal-
lenging and completed as part of an assigned team.

This warmup project is structured slightly differently than the other projects this
semester. For most projects, you’ll start working on Tuesday and have a graded
checkpoint worth 50% of the points on Thursday. We’ll then tackle the crux of the
project together in lab on Thursday and you’ll have until the following Monday to
finish.

For this project, don’t start before the scheduled lab session. We’ll begin it as a
class in lab on Wednesday, September 6th. You will then complete the project at
your own convenience. I encourage you to ask questions outside of the scheduled
lab times by e-mail, during office hours, or in lecture.

As a reference, my solution for this project was 25 statements and 204 comment
lines (as reported by iCompile), including the Doxygen comments that generate the
report. Most of the code is given to you in this handout.

Track how much time you spend on this project. You’re required to include
this in your final report.

If you haven’t completed the report and everything except the custom scene
within three hours of work after the scheduled lab, stop working and talk to
me immediately. In that case you are putting your effort into the wrong part, or I
didn’t explain something clearly enough. The entire project should take at most six
hours outside of lab to complete.

1.4 Honor Code & Rules
You are encouraged to talk to other students and share strategies and programming
techniques but should not look at each other’s code directly. The honor code policy
for CS371 is designed to encourage more collaboration than in other courses. In
fact, collaboration with other students is an important factor in your class partici-
pation grade. Collaboration means sharing appropriate information, code, and data
with others in the class, including people who aren’t your assigned partner. See
the Welcome to Computer Graphics document from the first lecture for the explicit
course policies.

For this project only, you are not permitted to look at the sample projects in the
G3D distribution. You may not look at or invoke the G3D::GEntity class or the
G3D::ArticulatedModel::createCornellBox method. You may look at
and use the rest of the G3D source code. Tip: I grade against

the Specification, which

is usually terse. Advice

and Walkthrough sections

in the project documents

help you form a plan

for satisfying the specifica-

tion.

2 Specification

For each project, you will submit source code, documentation, and a report that
includes figures and data. These are unified within the source code and submitted
through the revision control system–I will grade whatever is checked in at the time
of the deadline. Note that I rely mostly on these three documents when evaluat-

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

ing your work. I will only review small sections of your code and may not run
your program at all when grading. This is a 300-level course, which means that
I’m evaluating how well you can describe and reason about algorithms and soft-
ware. Although I will offer programming advice, I assume that you already know
how to program quite well; making a program is no longer an explicit goal of an
assignment at this level. Tip: Use your time wisely.

Decide up front how much

time you are going to

spend on each part of the

specification, and move on

or seek help if something

starts taking too long.

Create your class, method, and function documentation as specially-formatted
Doxygen comments immediately before the element being described inside the
C++ header (.h) files. Prepare your report as a large Doxygen comment in a file
ending with .dox. From your report, include links to relevant code elements and
to images and videos that you have prepared.

1. Structure a directory in svn with exactly the following subdirectories, some
of which may be empty for this project:

(a) data-files - Files needed for running your program

(b) source - Your .cpp and .h source code

(c) doc-files - Files needed when viewing your documentation and re-
port

(d) journal - Empty for now, but we’ll use this next week

(iCompile will create a build directory as well. Do not add it to svn)

2. Build a program to load and visualize small scenes with an interactive cam-
era.

3. Create the following scenes in human-readable .scn.any data files, using
only the models/cube/cube.obj and the cubemap/whiteroom/whiteroom-*.png
environment map files:

(a) A single, white 1 m3 cube rotated 45 degrees about the vertical axis,
with center at x=0m, y=0m, z=-2m.

(b) A model of the Cornell Box that is pictured in Figure 6.

(c) A visually compelling scene of your own design.

4. Create overview and entry point (i.e., method, class, function, variable) doc-
umentation for your software using Doxygen.

5. Create the report described in Section 2.1.

As with all projects, you may negotiate changes to this specification with me if
you discover a more effective way for you to achieve the learning objectives of the
project. For example, students often propose loosening the restrictions on point 3c
in this project.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

2.1 Report
Create your report in the file mainpage.dox. The entire source file will be a
single giant comment that contains within it text and markup. The actual readable
HTML report is generated in build/doc when you type icompile --doc at
the command line. Note that the walkthrough at the end of this document helps you
to set up your first report.

Figure 2: What is your
graphics vision?

1. Vision. You’re going to learn a lot about numerical methods, software engi-
neering, hardware, geometry, and specific algorithms and data structures in
this course. But that’s not what drives you. In your head, you have a vision of
something created with computer graphics. Maybe it is the vaulted arches of
an immense cathedral, an epic space battle in silver and white, the mist-filled
caverns of a 3D fractal, or two cartoon characters exploring a jungle ruin.
Your vision can be a single scene, an animation that tells a story, a game,
or a complex interaction. Articulate your personal vision in a section at
the start of your report, using text and images. View every project as a
way to use computation to realize your vision. I’ll show many 3D films and
research results designed to inspire or enhance your vision, and a (graded) re-
quirement of each project is a compelling image, which is the primary place
where you will explore your realization. You are welcome to articulate a
new, personal driving vision at any point in the course, and to experiment
with different ideas on different projects.

2. System Overview Assume that someone who doesn’t know anything about
G3D or your program is going to have to modify it in the future. Describe the
structure of your program for this person in your report, with links to major
classes and methods. This should only take about one paragraph of space.
Feel free to use lists or tables.

3. Coordinate System. Make simple, isometric view, labelled axis-diagrams
of the 2D coordinate and 3D coordinate systems (by hand; don’t write code
for this), and include it in your report. On the 3D coordinate system, show
the direction of increase of the yaw, roll, and pitch angles. I would personally
use PowerPoint to create the diagram and then convert it to a PNG by press-
ing command-3 on the Mac and selecting the relevant area on the screen.
However, you may use any reasonable method that you like, including SVG
and ASCII art, so long as your solution renders correctly under Safari.

4. Results. Include images of the single scene, the Cornell Box, and your cus-
tom scene. Put the actual image files in the doc-files directory and link
thumbnails using the \thumbnail and \video Doxygen commands. Es-
pecially for your custom scene, you’ll have spent a while making it. Reap
the benefit of that time investment by making lots of images or a few videos,
not just one. I’ll show some of these images in class next week so that we
can see what each other created.

5. Questions. Knowing how to use documentation, experimentation, and re-
verse engineering to discover how a system works are important skills. In

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

this lab you copied a lot of code that I wrote. To gain mastery over that
code, figure out the answers to the following questions and write them in

Tip: When trying to

understand a library or

language feature, imag-

ine yourself in the API

or compiler writer’s place.

How would you have im-

plemented it? What con-

straints force that design?

your report. You’re going to have to get your hands dirty on this–the answers
aren’t just sitting there. Don’t share the answers with your classmates, but I
encourage you to share strategies for finding the answers.

(a) What are the differences between the Scene* and shared_ptr<Scene>
types?

(b) What is the ICE_EXTRA_SOURCE environment variable for?

(c) What is the INCLUDE environment variable for?

(d) Why did I tell you to put your initialization code into App::onInit

instead of constructor App::App? (There are many reasons. Try throw-
ing an exception from each, and consider the implications of throwing
an exception from a class’s constructor.)

(e) What invokes App::onInit, App::onPose, and App::onGraphics?

(f) Where is the file “cube.obj” stored on the file system? What made the
scene data file look there?

6. Time. We study software engineering techniques in CS371, and your of our
goals will be learning ways to work as an effective team member and as
an efficient individual programmer. I track the class average time for each
project and compare it to some baselines in lecture each week as one way of
measuring productivity. Your grade isn’t affected by how long you spent on
the project, but you do receive points for answering these questions.

(a) How many hours you spent on this project on required elements, i.e.,
the minimum needed to satisfy the specification. Include the time that
you spent in the scheduled lab.

(b) How many additional hours you spent outside of class on this project
on optional elements, such as polishing your custom scene or extreme
formatting of the report.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

3 Evaluation Process and Metrics

To evaluate your project, I will check your project out from Subversion as of
the deadline time. I will then run icompile --doc to generate the final report
and documentation. I will read sections of your source code, the report in the
index.html page generated by Doxygen, and sections of your documentation as
generated by Doxygen. I may run your program, but I will primarily investigate
its functionality by the description that you provide in the report. Note under this
scheme, that the artifacts from your creation of and experimentation with the pro-
gram are more important than the executable program itself. In the extreme,
for many projects you can receive a favorable evaluation even if your program does
not compile or execute as long as you document it well and write a good report. So,
invest time communicating clearly in your report and documentation; that’s what I
see when grading, not the time that you spend in lab or the insights hidden in your
head.

Later parts of the specification (e.g., the report) are usually worth more points
than those at the beginning (e.g., your initial code). In light of this, I recommend
working backwards for your first draft of the project. Begin each project by cre-
ating and document your major code entry points, and write the report with some
placeholder images and numbers. Do this before you ever write a line of exe-
cutable code. Doing so leaves you with a viable submission after the first hour of
work...from then on, you’re just increasing the value of your submission. This way,
you don’t end up writing the report and documentation at the last minute. This
process also helps you organize your program design. The alternative bottom-up
approach makes no sense for projects of this scale: why would you write helper
functions or implement method bodies when you don’t know what they are helping
or what the method does? You’ll also find that, when we move on to team projects
next week, it is essential that the team agrees on the program and report structure
before beginning work.

As described in the Welcome to Computer Graphics document, I will evaluate
your project in several categories:

• Mathematical (algorithm, geometry, physics) correctness

• Adherence to the specification

• Program quality

• Report quality

Some questions I consider when evaluating the source code are: Is it possible for
someone unfamiliar with it to find specific routines quickly? Is the code easy to un-
derstand? Does it make good tradeoffs between efficiency, clarity, and flexibility?
Are data structures used effectively? Are the algorithms correct? Are the geometry
and physics correct?

When evaluating the report, I consider: Do the experiments adequately explore
the correctness, performance, robustness, and parameter space of the algorithm?

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Are known bugs made clear, along with how you tried to solve them? Are appro-
priate sources cited for algorithms and code? Does the overview documentation
guide a reader to the relevant source code documentation? Is the architecture of the
program clear?

The report and code should both be as concise as possible without compromising
clarity. Use the papers we’ve read as examples of how to describe experiments
compactly.

Most students want to create a really impressive 3D scene for the “visually com-
pelling” screenshot mentioned in the specification. Keep in mind that I value your
process and presentation more than your program’s functionality. To get an “A”
you need to answer all of the questions from the specifications, format your re-
port cleanly, provide appropriate entry point documentation, demonstrate effective
use of the Model/Entity design pattern, and do the minimum necessary to satisfy
the specification. Going above and beyond the specification is personally satisfy-
ing, but earns you no additional points and will cost you points if you do so at the
expense of required elements!

I require you to report the number of hours that you spent on the project. That
number will not affect your grade. If you’re spending a lot more time than others
I will suggest some ways to improve your workflow. If you’re spending much less
time than I expected I’ll suggest some other directions you might optionally explore
if you want to learn more about graphics.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

4 Walkthrough

This lab contains detailed instructions for setting up your program because it is
your first time using the development environment and libraries. Future projects
will include a specification and some advice, but you create the software design
and implementation plan yourself.

Where this walkthrough says to enter specific code, please actually type it–do not
copy from the PDF and paste it into your editor. Typing the code yourself should
prompt you think about what it means, and if you make a mistake will give you an
opportunity to debug it.

4.1 Command Line C++ Programming on OS X

1. Open an OS X terminal window. The corresponding dock icon is shown in
Figure 3.

Figure 3: The OS X ter-
minal window icon.2. Update your .bashrc file. Run:

/usr/mac-cs-local/bin/check_login

It may tell you to then run additional commands.

3. Configure your compilation environment. Open or create ˜/.local_bashrc
in your favorite editor (mine is Emacs) and ensure that your environment vari-
ables contain the CS371 paths. These should look like: Tip: Take a few min-

utes to set your prompt,

screen brightness, key re-

peat rate, .emacs file,

Safari bookmarks, and

Dock configuration. Time

spent making your devel-

opment environment effi-

cient is well spent!

G3D9=/usr/mac-cs-local/share/cs371/G3D
export INCLUDE=$G3D9/include:$INCLUDE
export LIBRARY=$G3D9/lib:$LIBRARY
export PATH=/usr/mac-cs-local/share/cs371:$G3D9/bin:

/usr/texbin:/opt/local/bin:$PATH
export G3D9DATA=$G3D9/data
export ICE_EXTRA_SOURCE=$G3D9/source/GLG3D.lib/source:

$G3D9/source/GLG3D.lib/include/GLG3D:
$G3D9/source/G3D.lib/source:
$G3D9/source/G3D.lib/include/G3D:$ICE_EXTRA_SOURCE

Note that there are no spaces around the equal signs and that paths are sepa-
rated by colons. The PATH and ICE_EXTRA_SOURCE variables should each be
entirely on one line–I reformatted those to fit on this page.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

4. Configure your editing environment. Open ˜/.emacs and add these lines:

(setq c-basic-offset 4) ; 4-space indenting

; Compilation shell: M-x cshell
; Makes error line numbers into emacs links
(defun cshell ()

(interactive)
(shell)
(compilation-shell-minor-mode)

)

;; make a shortcut for the goto-line function
(global-set-key [f8] ’goto-line)

5. Configure your subversion environment. At the command line, execute:

svn status

and ignore the warning that it prints.

This will create a ˜/.subversion directory. Open ˜/.subversion/config.
Search for the global-ignores line and replace it with:

global-ignores = *.o *.lo *.la *.al .libs *.so

.so.[0-9] *.a *.pyc *.pyo *.rej *˜ .*.swp
.DS_Store g3d-license.txt log.txt temp tmp
.ice-tmp build

This should all be on one line; I had to break the line here because it was too
long to print (note that most of this line is already in the file, and be careful
not to use # anywhere regardless of what is already present, since that is the
comment symbol for this configuration script). This setting tells the revision
control system to ignore certain generated files and directories. Everything up
to g3d-license.txt is probably already in the file but commented out.

6. Go to the scratch directory. In this course, we keep our code under revision
control on a server. During a programming session, we always check out that
code to the local disk, and then check it back into the server at the end of the
session. You want your code on the server between sessions because it enables
collaboration on the pair-programming assignments, keeps your data safe in the
event that something happens to the computer you’re working on, and allows
you to revert to a previous version if you make a mistake. You want to compile
on the local scratch disk instead of your home directory because your home
directory is on the network and is very slow. To get to the scratch disk on the
Mac, type:

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

cd /Volumes/scratch

7. Check out your project directory from Subversion.. For each project I will
set up a Subversion directory for you. For the first project the name is simply
cubes-$USER, where you can type your username in place of $USER or just
allow the OS X shell to replace the environment variable for you.

You should have already received your Subversion account name and password
by e-mail. Your username is the same as your Unix and Mac OS account name.
Your password is not the same, and you cannot change it yourself– tell me right
away if your password has been compromised and I will give you a new one.

The commands to check out the first project are:

svn co svn://graphics-svn.cs.williams.edu/371/0-Cubes/cubes-$USER

cd cubes-$USER

Since there’s nothing in your project yet, this will just make a directory with a
.svn subdirectory. Do not ever copy, delete, or directly manipulate the .svn

subdirectory.

8. Write a small program in Emacs. You used the C programming language pre- Tip: “emacs –nw” runs

Emacs in a terminal win-

dow, launches fast, and

runs over SSH. “emacs”

launches Xemacs, which

lacks those nice properties

but gives you menu bars.

viously in CS237 and possibly other courses. We’ll go through a quick refresher
and introduce the debugger. Start by opening Emacs and entering the following
program. When you’re done, save it as main.cpp, but do not quit Emacs.

#include <stdio.h>

void f() {
throw "Exception";

}

int main(const int argc, const char* argv[]) {
// f();
printf("Hello, world!\n");
return 0;

}

Tip: This might be

a good time to look

up the Emacs commands

for splitting and unify-

ing panes, and switching

buffers if you’ve forgotten

them.

9. Compile with g++.: Open a second view pane inside Emacs using “C-X 2”. Do
not open a second terminal window. Create a shell under Emacs using “M-x
shell”. From that shell, compile your program using the command:

g++ -g main.cpp -o hello-world

Run your program by executing hello-world at the command line. It should
print...“Hello, world!”.

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

10. Run under gdb. We’re going to see how to run a program under the command-
line debugger and perform basic operations. Debuggers are most useful when
your program is doing something wrong, so we have to break the program. Un-
comment the line in the body of main() that calls function f() and recompile
your program. Now, launch the debugger with

gdb hello-world

(a) Press “r” to run your program.
(b) When it crashes, type “bt” to see a backtrace. It should look like:

(gdb) bt
#0 0x00007fff86db83d6 in __kill ()
#1 0x00007fff86e58972 in abort ()
#2 0x00007fff885455d2 in __gnu_cxx::

__verbose_terminate_handler ()
#3 0x00007fff88543ae1 in __cxxabiv1::__terminate ()
#4 0x00007fff88543b16 in std::terminate ()
#5 0x00007fff88543bfc in __cxa_throw ()
#6 0x0000000100000e8e in f () at main.cpp:4
#7 0x0000000100000ea2 in main (argc=1, argv=0x7fff5fbff4b8)

at main.cpp:8

(c) Type “frame 6” to select function f’s stack frame.

(d) Type “list” to see the source code around the active line (you can also
look at line 4 of main.cpp, since the debugger told you that is where the
problem was.) It will show you the code that triggered the exception.

(e) Now switch stack frame #7 so we can look at some variables.

(f) Type “print argc” to look at argc. Since argc was a formal parameters
for the function, it is also printed in the back trace directly.

(g) Quit the debugger by typing “q”.

(h) Fix your program by commenting out the call to f() again, and save
main.cpp.

11. Compile with iCompile. You could continue to directly invoke g++ for the rest
of the semester, however the g++ command line gets complicated very quickly
when we write more sophisticated programs. For example, the command line to
compile the project you’ll complete this week might look like:

g++ -D_DEBUG -g -D__cdecl= -D__stdcall= -D__fastcall=
-fasm-blocks -arch i686 -msse3 -mfpmath=sse -pipe
-Wall -Wformat=2 -Wno-format-nonliteral
-Wno-deprecated-declarations -I G3D9/build/osx-i386-g++4.2/include/
-I /usr/local/include/ -I /usr/include/ -o build/0-Cubes
-Wl,-w -arch i686 -msse3 -mfpmath=sse
-Wl,-headerpad_max_install_names -L G3D9/build/osx-i386-g++4.2/lib/
-L/usr/local/lib/ -L/usr/lib/ -framework AGL -framework
IOKit -lGLG3Dd -lavformat -lavcodec -lavutil -lG3Dd -lzip

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

-framework Cocoa -framework Carbon -lz -framework OpenGL
-lpthread -ljpeg -lpng -multiply_defined suppress
-all_load source/App.cpp source/Scene.cpp

I don’t want to type that–I don’t even want to see it again. So, instead of running
g++ directly, you’re going to use a script that produces the command line for
you. The script is called iCompile and it comes with G3D. It is written in
Python and you are welcome to look at the source code for it. For now all that
you need to know is that if you type:

icompile

in the directory containing your project, it will figure out the appropriate g++
command line and execute it. You can use the --verbosity 2 command line
option if you’d like to see the underlying commands that are being executed.
The first time you run iCompile on a project it will ask you to confirm that you
really want to compile. You do, so press “Y”.

12. To see a complete list of iCompile options, run

icompile --help

You will use the --opt, --run, --doc, --gdb, and --clean ones frequently.

4.2 Graphics Programming with G3D::GApp

1. Move main.cpp to source/main.cpp. Edit your main.cpp to look like:

Tip: Save frequently and

whenever you compile or

switch buffers. This

will keep you from acci-

dentally compiling out-of-

date code and will increase

the chance of recovering

your program in the event

of a crash. Graphics pro-

grams interact with the

OS at a low level and can

crash your computer.

#include "App.h"

// Tells C++ to invoke command-line main() function even
// on OS X and Windows.
G3D_START_AT_MAIN();

int main(int argc, const char* argv[]) {
GApp::Settings settings(argc, argv);
settings.window.width = 1440;
settings.window.height = 800;

return App(settings).run();
}

Note that you can’t recompile because you haven’t written the new classes that
are being referenced yet.

2. Add main.cpp to Subversion. Whenever you create a new file, it is a good idea
to add it to revision control right away so that you don’t later forget. Execute:

svn add source

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

This command will mark source/ and source/main.cpp for addition to
your repository. You can see this by running svn status. They haven’t actu-
ally been added yet. To do that, commit your changes with:

svn commit -m "Added main.cpp"

Now your file is on the server and safe from local changes. If you modify the
file, you will need to commit the new version, but never need to add this file
again.

Tip: Always work from a single, persistent Emacs instance. It can have lots of

different files and multiple command-line shells open. Do not open up a second

copy of Emacs, ever. This will keep you from accidentally opening the same file

in two different sessions. It will reduce your development time. You can keep your

hands on the keyboard while compiling, and can cut and paste between files and

between code and the shell using only Emacs keyboard commands. It will also reduce

the overhead of editing. I’ve seen students who opened a source file, found the line

they needed to change, edited it, closed the editor, and then compiled. The compiler

would report an error on the very next line, so they re-opened the same file, searched

for the line, etc...it took those students more than twice as long to debug a program

as the ones who simply kept their files open and on the right line.

3. Create source/App.h.

C++ splits code into header and implementation files. By convention, we put one
class in each header. Header files describe the interfaces to classes and functions.
They include both public and private data because the compiler needs to know
the size of each class, and the private data affects the size. Write a App.h header.
That file contains the interface for the App class that will manage the graphical
user interface (GUI) and general 3D scene state for your program. It should look
like:

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Tip: You don’t have to

list your method argu-

ments vertically. I just did

that here so that the lines

would fit on the page in

the PDF. If you do make

them vertical, it is easier

to read if you line them up

in columns.

#ifndef App_h
#define App_h

#include <G3D/G3DAll.h>

class App : public GApp {
private:

public:

App
(const GApp::Settings& settings);

virtual void onInit();

virtual void onPose
(Array<shared_ptr<Surface> >& surface3D,
Array<shared_ptr<Surface2D> >& surface2D);

virtual void onGraphics3D
(RenderDevice* rd,
Array<shared_ptr<Surface> >& surface3D);

};

#endif

The preprocessor commands at the top of the header are called a header guard. Tip: Forgetting the semi-

colon at the end of the

class definition, forgetting

the #endif, and incor-

rectly copying the base

class’s method signatures

when overriding them are

common bugs that create

misleading compiler mes-

sages.

They are a common trick used to ensure that this header is never included twice
into your program, since doing so could cause hard-to-debug compile time er-
rors.

The include preprocessor command imports the definition of the G3D library.
The C++ language provides only computation, not routines for managing the
GUI, communicating with the graphics card, or even basic file I/O. All of that
is contained within libraries. We’re going to use the G3D library as a common
and platform-independent source of utility routines. It is good for learning 3D
graphics because it resembles a film or game rendering engine, but exposes most
of its functionality so that you can replace parts with your own code.

The App class inherits from GApp, which is part of G3D. Look it up in the G3D
documentation (be careful to use the version 9.00 beta documentation on our
server at

http://graphics.cs.williams.edu/courses/cs371/f12/G3D/manual and

not the older version on SourceForge). GApp provides a number of event han-
dlers (a.k.a. callbacks), which are implemented as virtual methods. We can
override these to respond to specific events. In this project we’re going to exe-
cute some code on initialization, when the scene is “posed” for rendering, and
when the scene is rendered in 3D.

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371/f12/G3D/manual
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

4. Add App.h to revision control.

svn add source/App.h
svn commit -m "Added App.h"

From here on, I’m going to assume that you add every file that you create with-
out needed explicit instructions. Take care to not add generated files (e.g., the
build directory, Emacs backup files ending in tilde) to the repository. If you
accidentally add something, you can svn revert that file. See the Subversion
manual and the svn --help command for detailed instructions.

Beware that the files you add consume space on the single, shared disk used for
all students in CS371. Please don’t check in huge files–limit yourself to small
amounts of data and let me know if you have an unusual, reasonable need to
commit a large file. There’s a limit of about 2 MB per file that is enforced by
the system, but this is mostly to help you catch accidental file additions. You
could easily thwart it by checking in lots of small files, for example. You’re
responsible for being considerate about your own file usage.

5. Create source/App.cpp to implement your App class by typing in the fol-
lowing:

#include "App.h"

App::App(const GApp::Settings& settings) : GApp(settings) {
}

void App::onInit() {
// Put initialization code here

}

void App::onPose
(Array<shared_ptr<Surface> >& surface3D,
Array<shared_ptr<Surface2D> >& surface2D) {

(void)surface3D;
(void)surface2D;

}

void App::onGraphics3D
(RenderDevice* rd,
Array<shared_ptr<Surface> >& surface3D) {

(void)surface3D;
Draw::axes(CoordinateFrame(), rd);

}

http://graphics.cs.williams.edu/courses/cs371 16

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Allof the (void) expressions are just a way of telling the compiler that you’re
intentionally ignoring the value of another expression. In this case they serve to
prevent the compiler from warning you that you ignored the parameters to most
of the methods. Tip: You should al-

ways investigate warnings,

and modify code to avoid

them in cases where you

verify that there is no

problem. That way you

will notice the new warn-

ings if introduce incorrect

code later.

The only interesting thing in this class is the App::onGraphics3D method,
which uses the G3D::Draw utility class to render the default coordinate frame
as a set of arrows. Those axes will help us stay oriented as we create a more
interesting scene.

6. Run it! Compile and run your program using iCompile. You should see a set
of colored axes on a blue background and some additional debugging tools that
G3D adds to every program. You can disable those debugging tools later in your
App::onInit method, but for simplicity just leave them there right now.

By default, G3D::GApp creates a G3D::FirstPersonManipulator that al-
lows you to move the 3D camera. This manipulator uses common first-person
PC video game controls. The ‘W’, ‘A’, ‘S’, and ‘D’ keys on the keyboard will
translate the camera forward, left, back, and right relative to its own axes. If
you press the right mouse button (or press “control” and the mouse button for
a single-button mouse under OS X), the mouse rotates the yaw and pitch of the
camera. It requires you to press a button because otherwise using the mouse
with the GUI would also move your viewpoint. G3D contains other manipu-
lators with different control styles, and you can write your own or use none at
all; this is only the default. Move the camera around a bit to get a feel for the
controls, and then exit the program by pressing the “esc” key.

4.3 Draft Report
You should write your report first. Otherwise you’ll end up scrambling at the last
minute and write a weak report, which is a poor strategy since it is worth as much
as 50% of your grade. So, although you haven’t yet written a program that satisfies
the specification, start the report right now.

1. Create mainpage.dox. This file resides in the root of your project (above
source). The name or location of the file doesn’t actually matter, but it will be
easier for us to find each other’s reports when collaborating if we follow a con-
vention. This file is technically a C++ file, but it contains no executable code.
Instead, it is a giant comment written with Doxygen markup, which is a mixture
of LaTeX and HTML. Start your contents out like this:

http://graphics.cs.williams.edu/courses/cs371 17

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

// -*- html -*-
/** \file mainpage.dox \mainpage

\section Report
Project: 0-cubes

Team: Morgan McGuire (morgan@cs.williams.edu)

Date: September 10, 2012

\subsection Vision Vision

My driving vision for 3D graphics is...

\subsection Overview Overview

The program begins in main(), which then creates an
instance of App on the stack...

\subsection coords Coordinate System

\thumbnail{temp1.jpg, The 2D Coordinate System}
\thumbnail{temp2.jpg, The 3D Coordinate System}

\subsection Results Results

\thumbnail{temp1.jpg, The white cube}
\thumbnail{temp2.jpg, The Cornell Box}

\subsubsection scene My Scene

\thumbnail{temp2.jpg, Main view with wireframe}
\thumbnail{temp2.jpg, Main view without wireframe}
\thumbnail{temp2.jpg, My scene from above}
\thumbnail{temp2.jpg, Another view}

\subsection Questions

 Scene* vs. shared_ptr<Scene>:

The Scene* syntax ...

 ICE_EXTRA_SOURCE:
This environment variable ...

\subsection Time

Time on required elements: ?? hours

Time on optional elements: ?? hours

*/

http://graphics.cs.williams.edu/courses/cs371 18

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Figure 4: The draft report with placeholder images and text.

Note that I was able to write a lot of the report without knowing anything about
the project. Also note that I took some care to make it look attractive and clearly
organized. I’m evaluating you partly on clarity of presentation, so proper gram-
mar, spelling, a clear layout, and effective use of images and diagrams earn you
points (and after all, this class is about visual communication!)

The thumbnail commands insert references to images stored in the doc-files
or journal directory. Since you don’t have any results, insert some place-
holder images for now.

2. Generate the HTML. Run icompile --doc to generate build/doc/index.html,
which is your report. Note that iCompile generated a file name Doxyfile,
which controls some aspects of this process. You should check this in to svn.
You should also modify the project name appropriately.

Your report should initially look something like figure 4.

3. Articulate your vision. Write about your driving vision. Don’t hesitate to use
images here if some examples would help. Keep this to one paragraph (or even

http://graphics.cs.williams.edu/courses/cs371 19

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

one very good sentence).

4. Coordinate system. Answer the coordinate system question now. You’ll need
to know this information shortly to complete the next set of tasks, so you might
as well lock in the points for looking it up now as well. This is not a coincidence, Tip: The Tools document

contains sections on the

2D and 3D coordinate sys-

tems.

of course–I try to ask questions in the report that you should be asking yourself
anyway to complete the assignment effectively. This is another reason to start
the report early.

5. Questions. Sketch out answers to the four explicit questions on the report now.

4.4 One Cube
We begin by building the simple scene containing a single cube lit by an infinitesi-
mally small (i.e., point) light source shown in Figure 5. The cube will be centered
1 m along the positive x-axis and rotated 45 degrees about the vertical axis.

Figure 5: A scene
with one instance of
cube.obj, and a set of
axes for debugging.

There are more convenient ways of creating the objects described in this section,
and fairly helpful defaults for all of the values. I’m using a verbose initialization
process here to make clear what options you can change. In the G3D documentation
you can find details about these settings and even more options.

The concept of reducing a complex model to just the information needed to ren-
der a frame is common in computer graphics. “Pose” is the name that I give this
process; there is no universally accepted term for it. In the G3D API, a “surface”
is the boundary of a 3D object. That is, what you would call a surface in everyday
life. Beware that for historical reasons, under some graphics APIs, “surface” also a
name for the image that is being rendered.

1. Check arguments in main. We’re about to pass the name of the scene to load
to the program as a command line argument. This means that we should print an
error if the user (i.e., you) forgets the argument rather than letting the program
crash. Modify your main function to test that there are exactly two values in
argv with:

if (argc != 2) {
printf("Must specify the name of the scene\n");
exit(-1);

}

2. Add a scene. The G3D::Scene class provides all of the code needed to read
data files describing 3D scenes. Add one to your program by adding a shared_ptr<Scene> m_scene

protected member variable in App.h. Initialize it in App::onInit as:

m_scene = Scene::create(m_settings.argArray[1]);

http://graphics.cs.williams.edu/courses/cs371 20

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

3. Create a data file. Create a data-files directory in the root of your project
(i.e., next to source). In that directory, create a file named cube.scn.any
that contains:

// -*- c++ -*-
{

name = "Cube",

models = {
cubeModel = ArticulatedModel::Specification {

filename = "models/cube/cube.obj";
stripMaterials = true;
preprocess = (

setMaterial(all(), all(), Color3(1, 1, 0));
);

};
};

skybox = {
texture = "cubemap/whiteroom/whiteroom-*.png";

};

entities = {
light0 = Light {

type = "SPOT";
position = CFrame::fromXYZYPRDegrees(10, 10, 10, 45, -35, 0);
spotHalfAngleDegrees = 30;
power = Power3(6000,6000,6000);

};

cube0 = VisibleEntity {
model = "cubeModel";
position = CFrame::fromXYZYPRDegrees(0, 0, 0, 0, 0, 0);

};

camera = Camera {
position = CFrame::fromXYZYPRDegrees(0, 0, 5);

};
};

}

This creates a simple scene graph. It contains one kind of model, which in this
case is named “cubeModel”. It then creates one entity called “cube0” that uses
cubeModel for its geometry, one light, and cone camera. The separation of an
instance of an object from its template allows many objects in the scene to share
an appearance without having to store redundant appearance data in memory.
This is the Entity/Model data structure.

This data file looks a lot like C++ code, although it is not. This allows Emacs
to properly indent and syntax-color the file (after you’ve saved and reloaded
it). Most of the capitalized names in the file correspond to G3D classes, and

http://graphics.cs.williams.edu/courses/cs371 21

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

this is just an easy way of instantiating a lot of classes without hardcoding the
information into your actual program. You can check the G3D documentation
to see some of the options to these classes.

The “specification” classes are a way of setting a complex set of arguments to
factory methods and constructors. This is a design pattern that G3D uses for
most major classes. It isn’t the only way of handling complex initialization
arguments, but it is one I’ve come to prefer (you’ll see some of its advantages
in the next project). I think the best way to teach design patterns is to have
you just start using them. You’ll pick up a lot of small programming tricks like
this throughout the course that will be new tools you can later apply to other
problems.

4. Test. Run your program, providing the name of your scene, not the filename
(i.e., “Cube”, not “cube.scn.any”) on the command line with:

icompile --run Cube

If anything goes wrong, run under the program gdb with icompile --gdb
Cube in order to debug. Note that your program will still just draw the axes.

5. Pose and render the scene. Pose the scene by altering App::onPose to call
the super-class method and then the scene’s pose method:

void App::onPose
(Array<shared_ptr<Surface> >& surface3D,
Array<shared_ptr<Surface2D> >& surface2D) {

GApp::onPose(surface3D, surface2D);

m_scene->onPose(surface3D);
}

You don’t yet know how to draw the cube, so we’ll rely on some built-in G3D
code to provide a preview of the scene. You’ll spend the first half of the semester
writing a much better quality–but slower–renderer yourself, and then the last
half of the semester writing a fast and reasonable-quality renderer. For now, the
magic incantation that you need is just:

void App::onGraphics3D
(RenderDevice* rd,
Array<shared_ptr<Surface> >& surface3D) {

defaultRender(rd, defaultCamera, m_scene->lighting(), surface3D);
Surface::renderWireframe(rd, surface3D);

Draw::axes(CoordinateFrame(), rd);
Draw::lighting(m_scene->lighting(), rd);

}

Run your program again and you should be able to see the cube.

http://graphics.cs.williams.edu/courses/cs371 22

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

6. Model the scene. The specification requires you to make a white cube at a
particular position. I gave you the code to create a yellow cube at the ori-
gin. Modify the Color3 argument for the model to change the color (it ex-
pects red, green, and blue values–see G3D::Color3 documentation). Modify the
CFrame::fromXYZYPRDegrees arguments for the entity to position the cube.
That method name stands for “x, y, z, yaw, pitch, roll”; see the documentation
in G3D for more details.

7. Update the report. You just did a lot of work to create and render the cube...and
received 0 points for it. That’s because you haven’t updated your report yet. If I
graded your project at this stage, I wouldn’t know that you completed the cube
because there is only a placeholder in your results section. Take a picture of
the cube scene and add it to the report. You may want to crop the image in
photoshop so that there isn’t too much empty space around the sides.

Now you’ve locked in the points for completing the cube scene from the speci-
fication. From here on, I’m assuming that you’re updating the report after each
major step.

4.5 The Cornell Box
The Cornell Box is a real-world box at Cornell University that has been long used Tip: Look up G3D’s de-

bugging routines, espe-

cially debugPrintf and

debugAssert.

for photorealistic rendering experiments. The idea is that by constructing a real
scene containing only well-measured geometric primitives, we can create a perfect
virtual replica and then measure rendered results against real photographs. There
have been many variations on the Cornell Box. We’ll model the specific one shown
in Figure 6, and estimate the geometry rather than working from measurements.

Figure 6: The Cornell Box.

This Cornell Box can be modeled using seven instances of rotated, translated,

http://graphics.cs.williams.edu/courses/cs371 23

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

and scaled cubes. When creating your Cornell Box, scale the models, but don’t
rotate and translate them. Instead rotate and translate the entity placement. Were
we animating the scene, that design would give us more intuitive control of the
objects. It also lets us reuse objects. For example, all three white walls should be
different entities that use the same model.

1. Create a new data file. Create a cornell.scn.any file that will be your
Cornell Box. Remember to change the “name” field inside of the file.

2. Model the Cornell Box scene. To do this, you’ll need to be able to distort the
shape of the cube to make arbitrary rectangular slabs. Just like setMaterial,
there are program-like commands that you can put in a scene file to modify ge-
ometry. These are listed in the G3D::ArticulatedModel::Specification
constructor documentation. In this case, you want to use the transformGeometry
command, which might make part of your data file look like:

squishedCube = ArticulatedModel::Specification {
filename = "models/cube/cube.obj";
stripMaterials = true;
preprocess = (

setMaterial(all(), all(), Color3(1, 0, 0));
transformGeometry(root(), Matrix4::scale(0.5, 1, 2));

);
};

Figure 7: A rough
approximation of the
Cornell Box model
using seven instances of
cube.obj.

You can chose the scale and need not worry about the precise colors and angles.
Ensure that the walls have nonzero thickness. I chose 2 cm walls for a 1 m3

box, which is about the scale of the real box.

4.6 A Custom Scene

The single cube was my example to show the parameters you can adjust and how
to initialize certain classes. The Cornell Box is a classic rendering test that shows
me that you have sufficient control of the classes to model a given scene. For any
rendering project you’d probably make simple scenes like this as initial targeted
experiments. Then you’d make a more visually compelling scene to demonstrate
that your implementation scales to the complexity of more interesting data sets.

Design a visually compelling scene of your own and model it using cubes, lights,
and a sky box. For example, decided to create the dog shown in Figure 1 (you
should not make the dog–you should make something else.) I’m expecting some-

Tip: Press F4 to take

a screenshot and F6 to

record video in any G3D

program.
thing of about the complexity of my dog. Although you’re welcome to go beyond
that if you enjoy the process, I’m not expecting the Taj Mahal for Project 0; it just
has to be more interesting than the Cornell Box!

If you’re stumped for artistic inspiration, note that legos, Lincoln logs, and most
other building toys, let alone most houses and other buildings are just scaled cubes...

http://graphics.cs.williams.edu/courses/cs371 24

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Figure 8: Custom scenes created from cubes by students in CS371 in 2010.

4.7 Complete the report and submit

.
Finish off your work. You submit by checking into svn. Whatever is in the

repository at the deadline is what I will grade.
Remember to type svn status before you leave your computer. Any file

marked “M” is modified and not yet committed. Any file marked “?” has never
been added. Since you are working in a scratch directory on a local machine,
you need to check in any file that you want to see again–anything else will not be
available if you use a different computer or if the scratch directory is erased (which
happens periodically throughout the semester). You won’t complete most projects
in a single sitting, so it is a good habit to check in your files whenever you have
just completed a big step or when you leave the machine. I’m very paranoid and
commit files every time that my build runs successfully–we’ll discuss other reasons
why this is a good strategy for team projects next week.

5 The Gallery

Each week I’ll collect everyone’s images and put them on a web page (without
names), so that we can see each other’s work. I’ll show that page in lecture as well.
This is a common practice in art classes. It gives everyone a sense of the standard
of the class and presents new ideas. It is also nice to see the final products of the
projects that you collectively worked on.

http://graphics.cs.williams.edu/courses/cs371 25

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

But this is not an art course. So why do I require a “visually compelling” image
in every project? Visual communication and presenting your work effectively are
important in any field. Learning how to compose images that read clearly, with
good color palettes, camera positions, overlap, and lines is a valuable skill, and one
that anyone can acquire with practice. We’ll incidentally explore composition in
the context of the images we see throughout the semester in lecture.

In computer graphics in particular, it is important to leverage visual communica-
tion skills to present algorithms in a compelling way. On one hand, we’d like like
algorithms to be judged by quantitative results and analysis. On the other hand, fol-
lowing such analysis is a large investment on the part of the audience, and a single
image can prove that an algorithm is indeed sufficient for a task. As an audience
member, if someone can’t show you a picture demonstrating that his or her algo-
rithm does what you want it to, why would you bother following an analysis of just
how poorly suited it is?

Most computer graphics papers and talks therefore begin with a single, visually
compelling image, often called a teaser. If the teaser grabs you, then you will
investigate the rest of the work to see how well the technique applies under specific
targeted experiments. Those targeted experiments isolate a single phenomenon
and explore how parameters and specific input scenarios affect it. They typically
employ common datasets to allow comparison with previous techniques, the results
of which are often shown side-by-side.

The same process is also applied outside of pure research in the context of pro-
duction and engineering. Say that a technical director at a film company is inves-
tigating new shadowing methods. He or she would render a few scenes from that
company’s previous film with the new method to show everyone what to expect
from the new algorithms. He or she would then make specific images to investi-
gate the algorithm more carefully. For example, the hard shadow of a single edge
under a point light, the soft shadow of that edge under an area light, shadows from
translucent objects, cast by and on curved surfaces and so on.

All of these images are results, which has a formal meaning in this context. The
process of creating result image must be repeatable and clearly explained. Unless
that is explicitly part of the technique, result images should not be retouched in
tools like Photoshop–the pixels displayed must be the ones that come out of the
program. There are some gray areas of retouching: cropping and gamma correc-
tion for presentation are probably acceptable in most cases; scaling and color ad-
justment should probably be explained. For targeted experiments, the experimenter
should seek to produce a representative image, a best case and a worst case so as to
accurately describe the expected behavior.
References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In

Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.
ref.html.

ROBERTS, A., 2009. Getting to grips with Latex - Mathematics, December. http://www.andy-roberts.
net/misc/latex/latextutorial9.html and http://www.andy-roberts.net/misc/
latex/latextutorial10.html.

VAN HEESCH, D., 2012. Doxygen 1.8.2 manual. http://www.stack.nl/˜dimitri/doxygen/
manual.html.

http://graphics.cs.williams.edu/courses/cs371 26

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://graphics.cs.williams.edu/courses/cs371

Index

App.cpp, 17
App.h, 15

Cornell Box, 24

documentation, 4
Doxygen, 5, 6, 18

Emacs, 12

g++, 12
G3D, 14
G3D::Draw, 18
G3D::FirstPersonManipulator, 18
GApp.h, 15
gdb, 12

header file, 15
header guard, 16

iCompile, 13, 14, 18

main(), 14
main.cpp, 12, 14

onGraphics3D, 17, 23

PNG, 6
pose, 21
PowerPoint, 6

report, 4, 6
results, 27

screenshot, 25
shell, 12
source code, 4
Subversion, 12
surface, 21

	Introduction
	Overview
	Educational Goals
	Schedule
	Honor Code & Rules

	Specification
	Report

	Evaluation Process and Metrics
	Walkthrough
	Command Line C++ Programming on OS X
	Graphics Programming with G3D::GApp
	Draft Report
	One Cube
	The Cornell Box
	A Custom Scene
	Complete the report and submit

	The Gallery

