
CS 371 Project 2:

Eye Rays

Figure 1: Marco Dabrovic’s model of the atrium of the Sponza palace (http:
//hdri.cgtechniques.com/˜sponza/) has become a standard benchmark
scene for 3D rendering algorithms. By the end of this lab, you’ll be able to pro-
duce images of it yourself from first principles, without relying on the OpenGL/G3D
renderer.

1 Introduction
1.1 Overview
Ray casting is one of the core techniques for approximating photorealistic render-
ing. This algorithm casts a ray through each pixel to find the surface that colors that
pixel. The most straightforward variant, which you will implement in this project,
then shades the surface by iterating over the light sources. It was first investigated
by Appel and others in the late 1960’s, and quickly evolved into Whitted’s ray
tracing algorithm. Ray casting was also the basis for most real-time rendering un-
til fairly recently. Many 3D games in the early 1990’s such as Wolfenstein, Doom,
Heretic, Duke Nukem 3D, and Star Wars: Dark Forces explicitly cast rays. Other
games used a variant on ray casting called rasterization with direct illumination
well into the 2000’s. Later projects in this class will explore both ray tracing and
rasterization using the physically-based framework that you build this week.

The previous two projects focused on modeling scenes and left the rendering to
a simple black-box renderer built on OpenGL. In this project, you’ll augment that
preview with your own renderer so that you understand the entire system, from
the data files that describe the scene to the way the value of an individual pixel
is calculated. The images that your program generates this week should exactly
match the ones produced by the preview renderer.

http://hdri.cgtechniques.com/~sponza/
http://hdri.cgtechniques.com/~sponza/

CS371 2010 | PROJECT 2: EYE RAYS

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Educational Goals . 2
1.3 Schedule . 3

2 Rules/Honor Code 3

3 Specification 4
3.1 Checkpoint (Thursday 1:00 pm) 5
3.2 Report . 5
3.3 RenderSettings . 6
3.4 RayTracer . 7

4 Evaluation Metrics 9

5 Implementation Advice 10
5.1 Getting Started . 10
5.2 The Rendering GUI . 10
5.3 TriTree . 11
5.4 Functors (Closures) . 12
5.5 Ray Casting Algorithm . 12
5.6 Iterating Over Pixels . 13
5.7 Generating Rays . 13
5.8 Finding Intersection . 13
5.9 Shading . 13

1.2 Educational Goals
On this project you’ll learn about:

1. “Per-pixel” graphics

2. Ray casting

3. Direct illumination
(radiance from the source to the surface that scatters it towards the eye)

4. The functor design pattern, applied to ray-triangle intersection

5. A first experience with concurrent graphics programming

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

1.3 Schedule

Out: Tuesday, September 21
Checkpoint: Thursday, September 23, 1:00 pm

Due: Monday, September 27, 10:00 pm

This is an easy, solo project. As with other projects, try to quickly cover the
entire specification with stubbed out methods and provisional report text before
refining any one area.

As a reference, my solution required about 300 statements and 300 comment
lines, including the report Doxygen comments (as reported by iCompile), plus sev-
eral data files. Note that I always line-wrap my comments with M-q; if you don’t
your comments may look ugly in my editor and they will report as many fewer
lines. If your codebase looks like it is going to be more than 1.5× larger or smaller
than my solution, come talk to me because you may be on a bad path.

2 Rules/Honor Code

You are encouraged to talk to other students and share strategies and programming
techniques. You should not look at any other student’s code for this project. You
may look at and use anyone’s code from last week’s project, with their permission.

You must create the Sponza scene on your own, including camera placement.
You may directly share data for all other scenes, and can discuss the location of
files needed for the Sponza scene openly.

During this project, you are not permitted to directly invoke the following classes
and methods or look at their source code: the G3D rayTrace sample program and
the SuperBSDF class.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

3 Specification

Implement the following by extending the Meshes project from last week with: Although we’re implementing ray
casting this week, next week
we’ll be ray tracing, which is
why we are naming the class
RayTracer.

1. A class named RenderSettings that has at least the implementation de-
scribed in Section 3.3.

2. A class named RayTracer with at least the methods described in Section 3.4
that:

(a) Renders images by the ray casting algorithm (casting one eye ray per
pixel into the scene and computing the light scattered towards the cam-
era from light sources)

(b) Can operate in both single-threaded and concurrent multi-threaded modes.
(c) Searches for intersections using both exhaustive array and pruning tree

(G3D::TriTree) search, and can switch between them at run time.
(d) Computes Lambertian shading under point lights as described in Equa-

tions 1 and 2.

3. A scene containing the Sponza atrium that approximately matches the one
from Figure 1, in which:

(a) the Sponza was loaded with default ArticulatedModel parameters;
it is not scaled, is centered at the origin, and has its default materials

(b) The light source was created from:

GLight {
position = Vector4(15, 30, -5.5, 1.0),
spotTarget = Vector3(-7,0,0),
spotHalfAngle = 0.6,
color = Power3(10000)

}

4. A GUI comprising:

(a) Real-time preview of the scene.
(b) A drop-down list for selecting a scene, with a “reload” button.
(c) A drop-down list for selecting the ray casting resolution.
(d) A button labeled “render” to launch the ray casting algorithm.*
(e) Display of the last ray-cast result labeled with the wall-clock time to

render it.*
(f) Display of the number of triangles in the scene.*
(g) Controls for enabling multi-threaded rendering.*
(h) Controls for enabling use of the TriTree.*

* New this week.

5. Analysis of the runtime of the program as described in Section 3.2

6. Create the documentation reports specified in Sections 3.1 and 3.2.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

3.1 Checkpoint (Thursday 1:00 pm)

For this checkpoint:

1. Create the entire report with placeholder text and images.

2. Commit the files for the RayTracer and RenderSettings classes.

3. Implement, using a combination of pseudo-code comments and actual code,
the entire RayTracer class. It should compile without errors but need not
actually do anything or have a GUI.

3.2 Report
Write an appropriately-formatted report that covers the following topics:

1. An architectural overview of your program.

2. Discuss significant design choices that you made, and argue why your choices
were good for this project.

3. Discuss any known errors in your program, and how you identified and at-
tempted to correct them. Tip: Your ray-cast

images should match

those from preview mode

without wireframes when

environmentMapConstant

is zero, except for pixels

colored by the sky box.

4. Show pictures of the following scenes rendered with ray casting:

(a) The Cornell Box scene

(b) The Sponza scene

(c) A visually compelling scene of your choice that demonstrates texture
mapping. This need not be a new scene; you can use a scene that you or
another student created for a previous project, or extend such a scene.
Remember to commit the scene file and anything not in cs-local
that it needs to run to the data-files directory.

5. Questions. (To calibrate your level of effort, all of these together should take
you more than 10 minutes and less than one hour to complete.)

(a) The ray casting algorithm assumed that the only significant incident
light was directly from the sources. Describe the errors contributed by
this approach, a scene for which this error is significant, and briefly
propose an algorithm for incorporating indirect light that has scattered
from other surfaces.

(b) Without performing a formal experiment, suggest the performance im-
pact of multithreading. Is the speedup proportional to the number of
cores in the computer?

(c) Briefly speculate on how TriTree might work. You may research this
or read the source code, but I’m more interested in your own ideas about
how you would design a data structure for ray-triangle intersection.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

(d) Briefly describe the different ways that you would have to change your
program to incorporate another type of primitive, such as a true sphere.
Consider everything from the scene data files through the shading algo-
rithms.

6. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. Please report:

(a) How many hours you spent outside of class on this project on required
elements, i.e., the minimum needed to satisfy the specification.

(b) How many additional hours you spent outside of class on this project
on optional elements, such as polishing your custom scene or extreme
formatting of the report.

(c) Rate the difficulty of this project for this point in a 300-level course as:
too easy, easy, moderate, challenging, or too hard. What made it so?

(d) What did you learn on this project (very briefly)? In addition to the
algorithm, consider the workflow lessons, programming and design ex-
perience, and the process of thinking about questions. Rate the educa-
tional value relative to the time invested from 1 (low) to 5 (high).

3.3 RenderSettings
The RenderSettings class describes all of the options related to image forma-
tion that are not part of the camera (as we have abstracted it) or scene. You may
extend this, but for to ensure compatibility between each other’s projects, please
implement at least the following interface. You may copy-paste the header file, but
please re-type the C++ file to ensure that you read it closely. As with all code in
your program, you are responsible for understanding, documenting, and debugging
this code.

class RenderSettings {
protected:

GuiDropDownList* m_resolutionList;

public:

/** Image width in pixels */
int width;

/** Image height in pixels */
int height;

bool multithreaded;
bool useTriTree;

RenderSettings();
virtual ˜RenderSettings() {}

/** GUI callback */

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

void onResolutionChange();

/** Called from App::makeGui */
void makeGui(GuiPane* p);

};

The implementation of the required methods is: Tip: I’m giving you

code as source here and

through the G3D library,

but not telling you how

it is intended to be used.

Discuss this with your

classmates who may have

different insights.

// You can change these defaults:
RenderSettings::RenderSettings() :

width(256), height(128), multithreaded(true),
useTriTree(false) {}

void RenderSettings::onResolutionChange() {
TextInput ti(TextInput::FROM_STRING,

m_resolutionList->selectedValue().text());

width = ti.readNumber();
ti.readSymbol("x");
height = ti.readNumber();

}

void RenderSettings::makeGui(GuiPane* p) {
p->setNewChildSize(250, GuiPane::DEFAULT_SIZE, 120);

static const Array<std::string> resArray
("256 x 128",
"320 x 200",
"640 x 400",
"1280 x 720");

m_resolutionList = p->addDropDownList
("Resolution", resArray, NULL,
GuiControl::Callback(this,

&RenderSettings::onResolutionChange));

// Add more GUI controls here...
}

3.4 RayTracer
There are many ways of structuring a RayTracer class. I’m asking you to extend
the following structure because it will reduce the amount of refactoring you need
on subsequent assignments. You may copy and paste this interface into a header
file and need not re-type it.

protected:
/** Trace all pixels in this region and write the

results to m_image. Not threadsafe. */
void backwardTrace(int x0, int y0, int x1, int y1);

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

/** Trace this pixel only and write the result to
m_image. Threadsafe. */

void backwardTrace(int x, int y);

/** Estimates \f$L_{\mathrm{i}}(X, \hat{\omega}_{\mathrm{i}})\f$
for the ray, where \f$\hat{\omega}_{\mathrm{i}}\f$ =
<code>-ray.direction()</code>.

\param backwardBouncesLeft Reserved for future use.

*/
Radiance3 backwardTrace

(const Ray& ray,
int backwardBouncesLeft) const;

public:

virtual ˜RayTracer() {}

enum {ALL = -1};

/** Returns the number of triangles in the scene */
int setScene(const Scene::Ref& scene);

/** Blocks until the entire image is rendered.

Not threadsafe. Only invoke this method on a
single thread per RayTracer instance.

\return An image containing an estimate of the
radiance through each pixel center.

\param pixel The pixel to trace (for debugging
purposes)

*/
Image3::Ref render
(const RenderSettings& settings,
const GCamera& camera,
Vector2int16 pixel = Vector2int16(ALL, ALL));

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

4 Evaluation Metrics

Recall that you are responsible for the entire project, including the correctness and
clarity of code that you exported from Subversion to start the project, even if you
were not the original author. So make sure that you know what code is in your
project and that you understand it all!

To evaluate your project, I will check your project out from Subversion as of
the deadline time. I will then run icompile --doc to generate the final report
and documentation. I will read sections of your source code, the report in the
index.html page generated by Doxygen, and sections of your documentation as
generated by Doxygen. I may run your program, but I will primarily investigate
its functionality by the description that you provide in the report. Note under this
scheme, that the artifacts from your creation of and experimentation with the pro-
gram are more important than the executable program itself. For many projects
you can receive a favorable evaluation even if your program does not compile or
execute.

As described in the Welcome to Computer Graphics document, I will evaluate
your project in several categories:

• Mathematical (algorithm, geometry, physics) correctness

• Adherence to the specification

• Program quality

• Report quality

Some questions I consider when evaluating the source code are: Is it possible for
someone unfamiliar with it to find specific routines quickly? Is the code easy to un-
derstand? Does it make good tradeoffs between efficiency, clarity, and flexibility?
Are data structures used effectively? Are the algorithms correct? Are the geometry
and physics correct?

When evaluating the report, I consider: Do the experiments adequately explore
the correctness, performance, robustness, and parameter space of the algorithm?
Are known bugs made clear, along with how you tried to solve them? Are appro-
priate sources cited for algorithms and code? Does the overview documentation
guide a reader to the relevant source code documentation? Is the architecture of the
program clear?

The report and code should both be as concise as possible without compromising
clarity.

Tip: You need the TriTree and multithreading to be able to render large scenes in a

reasonable amount of time. If you are unable to get these working, do not panic, and

do not wait for hours for Sponza to render using Array. As long as you have written

the code to attempt to use TriTree and multithreading and have documented the

problem and how you tried to overcome it, you lose few points for the minor issue of

not having a final image of Sponza in your report.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

5 Implementation Advice

5.1 Getting Started
Start by exporting the previous week’s code to new Subversion project. See the
Tools handout from last week or refer to the Subversion manual [?] for information
about how to do this. Remember that you can use anybody’s code from the previous
week with their permission, so if you aren’t happy with your own project as a
starting point, just ask around.

The Subversion command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/2-EyeRays/eyerays-<name>

in which you should replace <name> with your user name.

5.2 The Rendering GUI
Your RayTracer::render method will take a relatively long time to compute
an image, perhaps several minutes. If you put it in App::onGraphics, it will
run every time that the screen needs to refresh. That will make it appear that your
program has crashed. So you should only invoke render when the user presses
the “Render” button. Look at the starter code for the exit and scene-reload buttons
to see how to connect a button to a method of App.

You can time infrequent tasks by measuring the difference in G3D::System::time
calls. For tasks that run every frame the G3D::Profiler and G3D::StopWatch

classes are more appropriate, but you don’t need that on this project.
There are many ways to display your image on screen. You could convert the

CPU-image that you rendered into a GPU-image using one of the many G3D::Texture
constructors, and then write code in App::onGraphics2D that draws a rectangle
filled with that texture. For this approach, you may wish to use G3D::RenderDevice::push2D
and G3D::Draw::rect2D.

Alternatively, you can use the G3D::GApp::show method to create a pop-up
window with your image inside it (that’s what I did, since it was really easy;
see Figure 2). That method just creates a new G3D::GuiWindow with a single
G3D::GuiTextureBox inside it, so you could also create your own style of pop-
up window, or embed the display within another part of your UI.

The drawback of using the built-in G3D GUI controls to display your image is
that it is hard to add your own debugging handlers. For example, if you explicitly
render your own UI in onGraphics2D, then you can write an onEvent handler
that detects mouse clicks on them. It is often handy when debugging a ray caster to
launch a 1× 1 window, i.e., single-ray, render job when the user clicks on a pixel.
This allows you to render the whole scene, and then set a breakpoint and re-cast the
ray through one pixel while watching it in the debugger. It is more challenging to
set up that kind of infrastructure if you are using a GUI control.

There are many ways to display the number of triangles in the scene. For exam-
ple, you can print on-screen using a G3D::screenPrintf from onGraphics3D,
an explicit call to G3D::GFont::draw2D from onGraphics2D, create a disabled
G3D::GuiNumberBox or G3D::GuiTextBox, or create a G3D::GuiLabel. As
with your other UI choices, you must decide how much you value ease of imple-

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

Figure 2: One possible user interface for the ray casting program.

mentation, ease of use for the end-user, attractiveness, performance, and function-
ality. Mine looked like:

debugPane->addNumberBox("Triangles", &m_triangleCount, "")->setEnabled(false);

Remember to briefly describe and support your UI choices in the report, just as
you would for your other implementation decisions.

5.3 TriTree

The TriTree data structure is a binary tree of triangles used to accelerate the ray
casting algorithm. We’ll study how it works later in the semester, and next week
we’ll perform detailed experiments to determine exactly how much faster it makes
the program.

When RayTracer::setScene is invoked, it should convert the Scene into a
form that allows both array and TriTree iteration. There are several ways to do
this. I found the easiest to be posing the scene and then calling G3D::TriTree::setContents
on the Surface::Ref array1. I never created an explicit Array<Tri>; instead, I
used the G3D::TriTree::operator[] and size methods to treat the TriTree
as if it were an array. You can follow this design or create an alternate one.

When G3D loads a scene, it assumes that you are going perform hardware ren-
dering on the graphics card (GPU), which has a separate memory space from the
CPU. Before you can invoke the CPU-methods on the G3D::Material, you must
therefore copy the texture data to the CPU. The G3D::Material methods ac-
tually do this for you automatically, but are not threadsafe, so when writing a
multi-threaded program you have to explicitly perform the data copy on the main
thread before launching additional threads. The G3D::TriTree::setContents
method takes an optional G3D::ImageStorage argument. Pass COPY_TO_CPU
to tell it to copy texture data from the GPU to the CPU while it is extracting the
triangles from the scene.

1SurfaceRef is an alias for Surface::Ref needed to break a dependency in the API.

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

5.4 Functors (Closures)

The functor design pattern is a C++ class that acts like a C++ function. They are
an approximation of the general programming language feature of a closure, which
is just a function that has a persistent parent environment in which to retain state.

A regular C++ function can retain state between invocations. Local variables
marked with the static keyword are initialized once, the first time that the func-
tion is invoked, and then retain their value on subsequent evaluations. This is conve-
nient for memoizing results, for example. However, it has several drawbacks. One
drawback is that the programmer has little control over the order in which variables
are destroyed when the program shuts down. Another drawback is that it is hard
for other parts of the program to access the state stored in these local variables.

C++ allows overloading of several operators. For example, we can write

Vector3 a;
Vector3 b;
...
a = a + b;

because Vector3::operator+ overloads the default + operator, which is only
defined for numbers. In addition to the expected arithmetic operators, some sur-
prising operators can be overloaded. These include the dereference operator, ->,
the array operator, [], and the function application operator, (). This means that
we can create a class that syntactically acts like a function. For example:

class fakeFunction {
public:

float operator()(int x, bool y);
};

...

float z = fakeFunction(3, true);

Such a class is called a functor. Because it is actually a class, we can add mem-
ber variables and other utility methods. That allows the “function” to retain state
between invocations, and for access to that state from other parts of the program.

The G3D::Tri::Intersector class that you will use in the ray caster is a
functor. It exposes the triangle and the barycentric coordinates of the closest inter-
section as public member variables. It provides additional information about the
intersection through some helper methods. It also has some member variables that
we won’t use in this project that control how the operator() works.

5.5 Ray Casting Algorithm

The ray casting algorithm that you are implementing is:

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

For each pixel position (x, y):

1. Generate the ray R from the camera aperture through the center of the
pixel position (x, y).

2. Find the first (i.e., closest to the aperture) intersection H of ray R with the
scene triangles

3. If there is no intersection then

(a) Set the pixel to a constant “background” color

else

(a) Set the pixel’s value to the shade of the surface.

(The boldfaced words are intended to suggest some variable and methods that
you may wish to use or implement.)

5.6 Iterating Over Pixels
For single-threaded iteration, I assume that you can figure out how to write the
necessary loops to iterate over pixels. Perform your iteration in a cache-friendly
fashion. To do so you’ll have to discover how your image is actually stored in
memory. When debugging, always run in single-threaded mode. It is much harder
to debug a multi-threaded program.

For multi-threaded iteration, you have two choices. You can either create a
ThreadSet of GThread subclasses manually, or invoke GThread::runConcurrently2D
with a callback method. I chose the latter in my own implementation.

5.7 Generating Rays Tip: You App needs a

RayTracer member.

Consider the merits of

making this member of

type RayTracer* vs.

RayTracer::Ref vs.

RayTracer.

For a camera at the origin facing along the −z-axis, it is a simple matter of geom-
etry to compute the ray from the eye. For a camera with an arbitrary orientation
that computation becomes more complex than we are prepared to deal with at the
moment. So invoke G3D::GCamera::worldRay to generate the ray through a
pixel. Note that worldRay considers (0, 0) the upper-left corner of the upper-left
pixel, so (0.5, 0.5) is the center of the upper-left pixel. Refer to the CS371 Tools
overview and G3D documentation for the 2D coordinate system specification.

5.8 Finding Intersection
You can compute the ray-triangle intersection yourself, use the helper methods on
G3D::Ray, or use the G3D::Tri::Intersector class.

Once you have found the intersection, there are several ways of extracting the
information that you need for shading. I chose to create a G3D::SurfaceSample
from the G3D::Tri::Intersector that I used to find the intersection, however
you are welcome to explore other designs.

5.9 Shading
Shade surface points visible to the eye using the equation:

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

Let ω̂i = S2(Qj −X)

Let d = ||Qj −X||

Lo(X, ω̂o) =
N−1∑
j=0

[
Φj

4πd2
(ω̂i · n̂) fX(ω̂i, ω̂o, n̂)

]
(1)

where light with index 0 ≤ j < N is described by power Φj and position Qj , X is
the intersection point, n̂ is the shading normal at the intersection, ω̂o points back
along the ray.

For this week, we’ll assume that fX is constant with respect to the incident di-
rection (as long as it is on the same side as the light!) and implement it as:

fX(ω̂i, ω̂o, n̂) =


kX
π

if (ω̂i · n̂ > 0)

0 otherwise

(2)

where constant kX is given by G3D::SurfaceSample::lambertianReflect.
Note that “0” really means G3D::Color3::zero() in this context; the math no-
tation hides the dimension because shading equations are typically expressed for a
single wavelength.

You should clearly document the shading function in your code and justify it in
the same way that we did in class. This is a good chance to exercise your new
LATEXskills.

In the G3D documentation you will find several applicable methods and fields
for implementing this method, including:

• G3D::GLight::power

• G3D::GLight::position (this gives you a Vector4, and you need a
Point3; invoke the Vector4::xyz method for an easy conversion)

• G3D::SurfaceSample, which extracts all of the constants needed for shad-
ing a point on a triangle from a texture coordinate.

• G3D::pif(), which returns π in floating-point precision.

This week, you are not required to restrict spot lights to only illuminate points
within their cone, although you may do so if you choose. Do not implement any
recursive or shadow rays this week.

The G3D::Material::bsdf class abstracts the bidirectional scattering func-
tion f and can implement it for a large range of materials. I’m asking you to not
use it this week so that you’ll see all of the parts of shading. In some future projects
you’ll have a choice of whether to use it or to write out the shading explicitly as we
did here.

Note that in mathematical notation we describe f as function parameterized on
a point and three directions, but in the programming API it is parameterized on

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 2: EYE RAYS

a texture coordinate and the directions. That is because the texture map repre-
sents the varying reflectivity of the surface as a function of texture coordinate. So
the SuperBSDF::evaluate function doesn’t actually need the intersection point,
only the texture coordinate to determine the applicable reflectivity.

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371

	Introduction
	Overview
	Educational Goals
	Schedule

	Rules/Honor Code
	Specification
	Checkpoint (Thursday 1:00 pm)
	Report
	RenderSettings
	RayTracer

	Evaluation Metrics
	Implementation Advice
	Getting Started
	The Rendering GUI
	TriTree
	Functors (Closures)
	Ray Casting Algorithm
	Iterating Over Pixels
	Generating Rays
	Finding Intersection
	Shading

