
Principles of Programming Languages CS 334 Spring 2009
Motivation Prof. McGuire

Two Motivations for Studying Programming Languages

The syllabus discusses direct motivation for taking CS 334 and our goals for the semester.
Here is a short essay on two of my personal motivations for studying programming
languages. One is an extremely practical reason, and one is more philosophical.

1. The Right Tool for the Job
When I was in graduate school, one of the qualifying exams to be admitted to candidacy as
a Ph.D. student was a programming exam. Each year's class of incoming students received
a detailed problem specification. We then each individually had to design and implement
software solution, and demonstrate its application to the problem. A major requirement for
the exam was documenting the software through a user manual, architectural design
documentation, and inline documentation within the source code.
 The year that I took the exam1, the problem involved searching a large database for
certain kinds of patterns. Parsing the database from the file format was a significant
systems problem. Recognizing the patterns, which stretched across multiple records, then
presented a hard design and algorithmic challenge. After the exam was over, we all
compared our solutions. The table below summarizes four of these.

Developer Language Lines Dev. Time Execution Time
Greg Prolog + Perl 253 3 days 10 hours
Matt Scheme 1730 4 days 2 hours
Lisa Java 10881 6 days 1.5 hours
Tom C++ 6208 7 days 20 min

Greg used Perl to reformat the database file and then a tiny Prolog program to search for
the patterns. Because these languages are well-suited to those problems, he needed very
little code and spent little time writing and debugging his program. His program ran very
slowly, but since it only had to run once, that wasn't a problem.

Matt spend three days writing a special purpose programming language in Scheme,
and then about half a day writing a program in that new language to solve the actual
problem. His program ran five times faster than Greg's, but took longer to develop because
he had to debug the entire interpreter first. Lisa and Tom were well versed in Java and C++
from their other CS courses, so they used those languages. It took them about the same
amount of time to implement their solutions. Tom was almost done at 5 days, but spent
two additional days debugging a memory corruption problem. He was able to use a feature
called templates to eliminate redundant code from his project, making the final source code
much shorter than Lisa's. When he finally got it working, Tom’s solution was substantially

1 Since many of the people who took this test are now professors, I've changed the names to protect the
innocent (and guilty) and combined stories from two different years the exam was given to make a point.

Principles of Programming Languages CS 334 Spring 2009
Motivation Prof. McGuire

faster than everyone else's.
I think that Greg made the best choice. That doesn't mean that Prolog and Perl are

better languages than the others, or that you should use them for most projects. What he
did was choose the right language for expressing an algorithm for the specific problem at
hand. Matt was probably a close second—he basically wrote a Prolog interpreter in Scheme
since he wasn’t familiar with Prolog itself. Had performance been the primary concern,
C++ would have clearly been the best. Had portability, concurrency, and working on a
large team been the major concerns, Java would probably have been the right choice.

2. Philosophy
If I could go anywhere in time and space, in my role as a computer scientist I would choose
to visit Princeton University and its Institute for Advanced Study from 1930–1950. Take
that trip with me now as a thought experiment. In the lecture hall, Prof. Einstein is
speaking on his theory of relativity. Researcher Claude Shannon is developing the theory
of information in his office, and in the next building the “beautiful mind” of Ph.D. student
John Nash is developing game theory. Most relevant to us, a new field called computer
science is emerging as group of mathematicians including Church, Turing, Gödel, and von
Neumann explore new mathematical languages for expressing computation. When modern
computers are later invented, these will be called programming languages.

Today, on the first day of CS 334, you already know several languages for expressing
computation. These include English, algebra, calculus, geometry, and Java. The Princeton
group didn’t have Java, but they did have all of the others, as well as a few more
mathematical languages. Considering these different languages, you might ask some of the
same questions as the Princeton group and those who followed in their footsteps:

• Area all languages equal? How small can a programming language be? [Church,
Turing, Felleisen, Sussman, Steele]

• Can we prove that a program is correct before we run it? [Gödel, Curry, Howard,
Dijkstra]

• What is the difference between a program and its data? Can programs write
programs? [von Neumann, Perlis, Sussman]

• How does the structure of a machine affect the computations it can perform?
[Turing, von Neumann]

• Are there functions beyond mechanical computation? [Turing, Gödel]

The names in brackets are just a few of the scientists who have studied these questions.
Thinking about these fundamental ideas will enhance your abilities as a computer scientist,
a software designer, and a programmer. I hope that they will also give you a glimpse of the
awesome frontier of knowledge at the intersection of computer science, mathematics,
cognitive science, philosophy, and physics. Although it seems far from our everyday
experience of writing Java and C++ programs, the nature of reality is tangled up with the
principles of programming languages. It is no coincidence that, for example, von Neumann’s
and Gödel’s works also contribute to quantum mechanics and general relativity, or that the
early computer scientists were rubbing elbows with Einstein, Nash, and Shannon.

