
Scheduling Lab CS 136
April 30, 2008 Spring 2008

1/3

Exam Scheduling Lab
Due 8:00 pm Thursday, May 8, 2008.

No late days or extensions per College policy.

This lab assignment is optional. If you complete it and score better than your current lab average I will
include this in your lab grade. If you do not complete it or score worse than your current lab average it will
not affect your grade.

1 Prelab
Complete the following problems from the book and submit them Monday, May 5 at 9:00am.

• Problem 16.2
• Problem 16.10
• Problem 16.15 (consider add, remove, addEdge)

2 Assignment

This week, you will write a program to schedule final exams for the registrar so that no student has two
exams at the same time. The goals of this lab are to:

• Gain experience using basic graph building and traversal operations.
• Develop a fairly sophisticated algorithm requiring several coordinated data structures.

You will use a greedy algorithm to determine an assignment of classes to exam slots such that:

1. No student is enrolled in two courses assigned to the same exam slot.
2. Any attempt to combine two slots into one would violate rule 1.

The second requirement ensures that we do not gratuitously waste exam slots (students would like to get out
of here as soon as possible, after all).

2.1 Input File
The input to your program will be a text file containing student class information. A sample file is:

 Jessica Chung
 CSCI 136
 MATH 251
 ENGL 201
 PHIL 101
 Ben Wood
 PSYC 212
 ENGL 201
 HIST 301
 CSCI 136
 Austin Stanley
 SOCI 201
 CSCI 136
 MATH 251
 PSYC 212

Scheduling Lab CS 136
April 30, 2008 Spring 2008

2/3

For each student, there are five lines. The first is the name, and the next four are the courses for that
student:

• Jessica Chung is taking CSCI 136, MATH 251, ENGL 201, and PHIL 101;
• Ben Wood is taking PSYC 212, ENGL 201, HIST 301, and CSCI 136; and
• Austin Stanley is taking SOCI 201 CSCI 136, MATH 251, and PSYC 212.

We provide small, medium, and large input files in the starter directory

 /usr/mac-cs-local/share/cs136/labs/schedule/

The output of the program should be a list of time slots with the courses whose final will be given at that
slot.

2.2 Algorithm
The key to doing this assignment is to build a graph as you read in the file of students and their schedules.
 Each node of the graph will be a course taken by at least one student in the College. An edge will be
drawn between two nodes if there is at least one student taking both courses. The label of an edge could be
the number of students with both classes (although we don't really need the weights for this program). Thus
if there are only the three students listed above, the graph would be as given below (edges without a weight
label shown have weight 1).

A greedy algorithm to find an exam schedule satisfying our two constraints would work as follows. Choose a
course (say, PHIL 101) and stick it in the first time slot. Search for a course to which it is not connected. If
you find one (e.g., HIST 301), add it to the time slot. Now try to find another that is not connected to any of
those already in the time slot. If you find one (e.g., SOCI 201), add it to the time slot. Continue until all
nodes in the graph are connected to at least one element in the time slot. When this happens, no more
courses can be added to the time slot (why?). (By the way, the final set of elements in the time slot is said to
be a maximal independent set in the graph.)
 If there are remaining nodes in the graph, pick one and enter it in a new time slot and then try adding
other courses to the same slot as before. Continue adding time slots for remaining courses until all courses
are taken care of. For the graph shown, here is one solution:

 Slot 1: PHIL 101, HIST 301, SOCI 201
 Slot 2: MATH 251
 Slot 3: CSCI 136
 Slot 4: ENGL 201
 Slot 5: PSYC 212

Notice that no pair of time slots can be combined without creating a time conflict with a student.
Unfortunately, this is not the minimal schedule as one can be formed with only four time slots. (See if you
can find one!) Thus a greedy algorithm of this sort will give you a schedule with n slots, no two of which can
be combined, but a different selection of courses in slots may result in fewer than n slots. Any schedule

Scheduling Lab CS 136
April 30, 2008 Spring 2008

3/3

satisfying our constraints will be acceptable (although see below for extensions to compute the optimal
solution).

2.3 Printing
Once your program has computed the final exam schedule, it must display it. Print out a final exam
schedule ordered by course name/number (i.e., AFR 100 would be first, and WGST 999 would be last, if
such courses are offered this semester).
 Then print out a final exam schedule for each student, in alphabetical order by last name.

2.4 Submit
 Submit your solution using the commands:

 tar –cvf schedule.tar files
 turnin –c 136 schedule.tar

3 Evaluation
 Prelab 30
 Correctness (follows specification) 60
 Read input
 Compute schedules
 Print schedules
 Readability + Design 60
 Graph class
 Useful helper methods
 Space + time efficiency
 Commenting
 Total 150

4 Advice
My solution is about 500 lines of code and contains five Java files.
 I recommend that you represent graphs as adjacency lists (and think about why this makes the most
sense for this application.) Vertex labels should be the course names.
 Here is one possible way to find a collection of maximal independent sets from the graph. Represent
each slot by some sort of a list (or, better yet, a binary search tree). To find a maximal independent set for a
slot, pick any vertex of the graph and add it to the list. Cycle through all other vertices of the graph. If a
vertex is not connected to any of the vertices already in the slot, throw it in. Continue until you have tried
all vertices. Now delete all vertices in the slot from the graph. Fill successive slots in the same way until there
are no vertices left in the graph.

