Graphs

1. Administrative
 a. Last required lab assignment this week (optional assignment goes out next week)
 b. Exam available 4pm Wednesday, due 4pm Friday
 i. Sign in/out from Lorraine Robinson in TCL 303
 ii. -1 point per minute after 4pm Friday!
 iii. Review homeworks, odd-numbered problems while studying
 iv. Review session tonight, 8pm
 c. CS Information Session tonight 9pm in the common room (with pizza)
 d. No class Friday 4/25 and 5/2
 e. Read chapter 16 on graphs

2. Graphs

3. Examples

4. Notation
 a. Set notation
 b. Labels
 c. Degree
 d. Source
 e. Sink
 f. Adjacent vertices
 g. Adjacent edges
 h. Cycle
 i. Acyclic graph
 j. Planar graph
 k. \(v_0 \) connected to \(v_1 \)
 l. Transitive closure
 m. Connected component
 n. Strongly connected component
 o. Complete graph
 p. Dual of a graph

5. Adjacency list representation
 a. Code on back of this page
 b. (See book for an alternative implementation)
 c. When is this a good representation?
public class ListGraph<
 VertexLabel, EdgeLabel> {
 private ArrayList<Vertex> vertices = new ArrayList<Vertex>();
 private ArrayList<Edge> edges = new ArrayList<Edge>();

 public class Vertex {
 private VertexLabel label;
 private ArrayList<Edge> outgoingEdges = new ArrayList<Edge>();
 private ArrayList<Edge> incomingEdges = new ArrayList<Edge>();
 private Vertex(VertexLabel L) {
 label = L;
 }
 }

 public class Edge {
 private EdgeLabel label;
 private Vertex start;
 private Vertex finish;
 private Edge(EdgeLabel L, Vertex s, Vertex f) {
 label = L;
 start = s;
 finish = f;
 }
 }

 //** Adds a new disconnected vertex */
 public Vertex addVertex(VertexLabel label) {
 }

 //** Adds a directed edge */
 public Edge addEdge(EdgeLabel label, Vertex v0, Vertex v1) {
 }
}