
The Darwin Game 2.0 Programming Guide

In The Darwin Game creatures
compete to control maps and race
through mazes. You play by
programming your own species of
creature in Java, which then acts
autonomously during competition.
Creatures can move, sense their
surroundings, and attack. A
successful attack replaces its target
with a new instance of the attacker,
allowing creatures to reproduce.

1 The World of Darwin
Darwin creatures exist in a rectangular world specified by a rectangular map. Different
maps are available. A map square may be empty, occupied by a creature, or by an
obstruction. Here are some of the common elements in Darwin maps:

Object Type Image Description
Wall Type.WALL

Impassable square. Attempting to
move onto this square halts but does
not harm a Creature.

Apple Type.CREATURE

Motionless, passive Creature just
waiting for you to attack it.

Thorn Type.THORN

Impassable square. Attempting to
move onto this square converts a
Creature to an Apple as if it were
attacked.

Flytrap Type.CREATURE

Dangerous creature rooted in place.
Continuously spins to the left and
blindly attacks.

Treasure Type.CREATURE

Attack this to complete a Maze map.

Morgan McGuire, 2008 http://cs.williams.edu/~morgan/cs136/darwin2.0
Williams College Computer Science Department

Thanks to Aaron Size, Chris Warren, and Josh Szmajda for play testing.

The Darwin Game Programming Guide

2/2

2 Development
You can play the Darwin Game on any operating system, using the free Java
Development Kit from Sun and any text editor, like Notepad, Emacs, Xcode, or Visual
Studio. Download the JDK from:

http://java.sun.com/javase/downloads/index.jsp

You can use any version of Java 5.0 or later. At the time of this writing, Java 6 Update 5
SE is the latest version. If you are on OS X, Linux, or FreeBSD then Java is probably
already installed on your computer.

To compile a creature, type

 javac mycreature.java

at the command prompt after installing Java. You can also use the command

 javac *.java

to simply compile all of the files.

There are several GUI integrated development environments for Java that are either
available free or have a free trial period. These include Eclipse, IdeaJ, BlueJ, and
NetBeans.

The Darwin Game Programming Guide

3/3

Winning Conditions
A creature species wins a Darwin map under either of the following conditions:

• Only its species, Flytraps, and Apples remain live on the map
• The time limit is reached, it is the most populous species (ignoring Flytraps

and Apples), and there are no Treasures remaining on the map.

All species lose if the time limit is exceeded and there are Treasures present or there is no
majority population.

By convention, Maze maps with names beginning in “mz_” contain only one kind of
creature and Treasure (typically, one creature and one Treasure). The goal on these maps
is to find and attack the treasure as fast as possible. Natural Selection maps with names
beginning in “ns_” contain multiple kinds of creatures and no Treasure. The goal on these
maps is to convert all members of other species, or at least hold a majority when time
runs out.

It is possible to create maps with other goals by simply combining Treasures with
multiple creature spawn points. For example a head-to-head map race could contain two
creatures and two treasures in disconnected mazes.

3 Creature Actions
In addition to regular Java commands for programming logic, creatures can perform
actions within the world. Each action has a real-world time cost measured in time steps.
All actions except for attack are effective at the end of the specified number of time steps.
For example, when moving, the creature sits still for 3 time steps and then moves
instantaneously. Attacks happen immediately, but then the creature is delayed for 4 time
steps.

Action Cost Description
Move
Backward

4 Move backward one square. If the square is blocked,
the move fails but still costs time.

Move
Forward

2 Move forward one square in the current facing
direction. If that square is blocked, the move fails but
still costs time.

Delay 1 Wait one time step without doing anything.

Attack 4 Attack the creature immediately in front of this one. If
there is no creature present, the attack fails but still
takes time. If the attack succeeds the target is
replaced with new instance of this creature facing in
the opposite direction.

Look 1 Return a description of the contents of the first non-
empty square observed in the creature’s facing
direction.

Turn Left 3 Rotate 90-degrees counter-clockwise.

Turn Right 3 Rotate 90-degrees clockwise

The Darwin Game Programming Guide

4/4

4 The Darwin GUI
The Darwin class runs the Simulator within a GUI. Its command line arguments are the
name of the map and the Creature classes with which to populate it. An initial optional
argument of -2D or -3D forces the initial view. For example, the command:

java Darwin -3D ns_faceoff.txt Rover Pirate

launches the simulator on the Faceoff! map with Rovers competing against Pirates.

The GUI always begins paused. Press one of the three play buttons to begin simulation.
The speed of simulation can be changed (or paused again) during play. The view can be
switched from 2D (good for debugging) to 3D (good for watching tournaments) using the
gray square and cube icons.

In 2D view mode, click on any Creature to view it in the Darwin Debugger. This shows
information about the Creature that updates in realtime, including the current value of its
toString method. Override toString on your Creature and use the debugger to inspect the
internal state as it moves through the map.

The Darwin Game Programming Guide

5/5

5 Creating Maps
Maps are ASCII files. The first line contains the width and height of the map and the map
title, separated by spaces and terminated by a newline. The remaining lines form a picture
of the map. The elements available are:

• ' ' Empty square
• 'X' Wall
• '#' Alternative color wall
• '+' Thorns
• 'f' Flytrap (which is a Creature)
• 'a' Apple (which is a Creature)
• '*' Treasure (which is a Creature)
• '0'…'9' Spawn locations of Creature subclasses

At load time, the outer border of the map is forced to be all Walls regardless of what was
specified in the map file.

Maze maps are named mz_mapname.txt. They contain a single Treasure (the goal) and a
single 0 that is the start position. (It is possible to make mazes with multiple treasures; for
these all Treasures must be attacked to win).

Natural Selection (“deathmatch”) maps are named ns_mapname.txt and may have any
combination of elements.

The text file for the Faceoff! map is shown below.

The Darwin Game Programming Guide

6/6

29 29 Faceoff!
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX X X X X X X X X X X X X XX
X X
XX XXXXX XX
X X 1 X X 1 X X
XX X 1 XXX XX
X 1 X X
XX X 11X 1 1 XX
X XXXXX X
XX 1 XXXX XX
X X
XX XX
XXXXXX+XXXX+X X+X XXXXX XX XX
XX a a a XX
X a a+a a X
XX a a a + XX
XX XX XXXXX X+X X+XXXX+XXXXXX
XX XX
X X
XX XXXX 0 XX
X XXXXX X
XX 0 0 X00 X XX
X X 0 X
XX XXX 0 X XX
X X 0 X X 0 X X
XX XXXXX XX
X X
XX X X X X X X X X X X X X XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The Darwin Game Programming Guide

7/7

6 API
Creatures all subclass Creature, which provides a set of protected and public methods that
enable the Creature to interact with the world. Creatures must either provide a public
constructor of no arguments or have no constructor. The constructor cannot make the
creature take an action.

A Creature’s run method executes when it is inserted into the world. When the run
method ends the creature can take no further actions (it remains in the world, however).
Therefore most Creatures have an intentionally infinite loop in their run method to allow
them to continue taking actions.

If a Creature is successfully and converted to another species, then it is removed from the
world but continues executing. The isAlive() method for a converted creature returns
false. If a creature that has been converted attempts to take an action, then a
ConvertedError is thrown. Most Creatures catch this error and then allow their run
method to terminate.

See http://cs.williams.edu/~morgan/cs136/darwin2.0/doc for the full Creature API.

Below is a sample of the code for a very simple Creature called a Rover. It moves until
obstructed and then attacks the obstruction and turns to the left. It is surprisingly
effective, but is unable to deal with Thorns because it never looks before moving. The
gray code is boilerplate common to every Creature. The bold black code in the center is
the logic unique to the Rover.

public class Rover extends Creature {
 public void run() {
 try {
 while (isAlive()) {

 if (! moveForward()) {
 attack();
 turnLeft();
 }

 }
 } catch (ConvertedError e) {}
 }
}

Creature positions are specified using Java.awt.Point, which you will need to import at
the top of your class to perform any useful operations on positions. Note the helper
methods on Creature and Direction that operate on Points and Observations.

The API uses Java enum types to specify Directions and creature Types. Enum types can
generally be treated as constants, however they do provide useful utility methods as well.
The following (nonsense) code shows examples of how to use the Direction enum.

The Darwin Game Programming Guide

8/8

Direction d = Direction.NORTH;

if (d == Direction.SOUTH) {
 …
}

d = d.left();

Point p = new Point(3, 4);
p = Direction.forward(p);

switch (d) {
 case NORTH:
 ...
 break;
 case EAST:
 ...
}

The Darwin Game Programming Guide

9/9

7 Images
You can customize the way the Simulator renders your Creature in the 3D view by
providing four images, called sprites. Each image must be in PNG format and be no
larger than 40 x 60 pixels. The images must be named Creature-D.png, where D is one of
N, S, E, W and Creature is the name of your creature’s class. Below are four images for
the Pirate Creature.

Images are drawn from a 45-degree isometric perspective. NS and EW lines should be
diagonals with a Y:X slope of 1:2. When drawing these it often helps to look at Wall.png
to get the perspective right. Since this is the perspective used for many 2D games like
Age of Empires, SimCity, Diablo, and Habbo Hotel you can often use sprite images from
those games (you can’t publicly distribute such sprites, though, because they are
copyrighted by the respective developers). A huge list of sprites ripped from 2D games
can be found at http://sdb.drshnaps.com/index.htm

Sprites should have transparent backgrounds. The center of the ground square is in the
horizontal center of the sprite and about 8 pixels from the bottom of the sprite. Drawing a
subtle drop shadow under a sprite helps makes it appear to actually be standing on the
ground.

Pirate-N.png

Pirate-E.png

Pirate-S.png

Pirate-W.png

The Darwin Game Programming Guide

10/10

8 Advanced Topics
Each creature runs on its own thread. This means that Creatures trade comptutation time
for the time that could be spent taking actions in the world. Actions take at least one
millisecond to complete, so small scale efficiency will not affect most Creatures.
However, if your logic is very slow, you might find that your Creature is thinking while
others are moving.

To communicate between multiple instances of your Creatures, create static fields to hold
values and use the Java synchronized keyword to control access to them. If a static
synchronized method has been invoked on a class, all other static synchronized method
calls on that class block (wait) for it to complete. This ensures that two instances are not
trying to read and write to a variable at the same time and is necessary for consistency.
For example, the following code allows a Creature to track how many other members of
its species are still alive:

Creatures may continue to execute after they have been converted so long as they do not
take actions. This simplifies the process of performing any kind of centralized control
because you can always use the first creature created to issue orders to the others.
Centralized control is not necessarily worthwhile, however—many creatures are very
effective by allowing group behavior to emerge from simple individual actions.

Creatures are allowed to open network connections, so you can control them interactively
from another machine if you like. However, at full simulation speed it is almost
impossible for a human to give any useful input because the Creatures move so fast.

You can run the Simulator without the GUI if working at a terminal or executing offline
simulations. The Simulator.toString method prints a text version of the 2D map to aid in
debugging.

class Counter extends Creature {

 static int numAlive = 0;

 static synchronized void changeNumAlive(int delta) { numAlive + delta; }

 static synchronized int getNumAlive() { return numAlive; }

 public void run() {
 changeNumAlive(1);
 try {
 // Body code here
 } catch (ConvertedError e) {
 // No longer alive
 } finally {
 changeNumAlive(-1);
 }
 }
}

