
Linear Structures Lecture Outline  CS 136 
March 7  Spring 2008  

1/2 

Linear Structures 
1. Exam Data 

a. Mean: 87/100.  Max = 101/100 

b. Interpreting your grade:                         

                          D                             C                                   B                           A 

                                     65                                      85                                95  

2. Most common misunderstandings: 
a. It is legal to cast any expression to any types in Java.  A runtime error will occur if the actual 

objects do not have the right type. 
b. The lower bound is the shortest amount of time (fastest) an algorithm could possibly run.  

O(1) is a lower bound on everything, but it is not a very tight bound (that’s like saying the 
algorithm is infinitely fast, regardless of the size of the input). 

c. The best and worst case bounds occur based on the actual data. Whether you are in the 
best or worst case must be independent of the bound variables (e.g., n).  Bounds must hold for 
some arbitrarily large n. The best case cannot be “when n = 1”; the point is that for some large 
n, what input data of that size would create good luck and let the algorithm terminate as soon 
as possible. 

d. For an inductive proof you must: 
i. Explain why the base case should have some value 

ii. Demonstrate that the base case does have that value 
iii. Assume that the theorem holds for n-1 
iv. Explain why the incremental change from n to n-1 should have some value 
v. Demonstrate that the incremental change does in fact have that value 

e. Any iterative method can trivially be rewritten as recursive by rearranging the parts of the 
FOR loop into the arguments to a recursive call 

3. Be lazy 
 
 
4. Stack (all methods O(1)) 

public interface Stack<E> { 

public void push(E v);                 // addLast 

public E pop();   // removeLast 

public boolean isEmpty(); 

public int size(); 

                     } 

 

5. Tail recursion 



Linear Structures Lecture Outline  CS 136 
March 7  Spring 2008  

2/2 

6. Example of a non-tail recursive method made iterative: 

 

 

Recursive     Iterative with Explicit Stack 

 
public static void quickSort(int[ ] data) { 
 
 
 
    quickSort(data, 0, data.length - 1); 
} 
 
 
/** Sorts elements from L to R, inclusive */ 
private static void quickSort(int[ ] data, int L, int R) { 
 
    if (L < R) { 
        int p = partition(data, L, R); 
 
 
        quickSort(data, L, p - 1); 
        quickSort(data, p + 1, R); 
    } 
} 

 
public static void quickSort2(int[ ] data) { 
    Stack<Bounds> stack =  
               new ArrayStack<Bounds>(); 
    
     stack.push(new Bounds(0, data.length - 1)); 
 
    while (! stack.isEmpty()) { 
        // Get the next piece of work to do                                                                                                                                       
        Bounds bounds = stack.pop(); 
        int L = bounds.L, R = bounds.R; 
 
        if (L < R) { 
            int p = partition(data, L, R); 
 
            // Push the two sub-arrays onto the stack                                                                                                                     
            stack.push(new Bounds(L, p - 1)); 
            stack.push(new Bounds(p + 1, R)); 
        } 
    } 
} 
 

 

 

7. Queue (all O(1)) 

public interface Queue<E> { 

public void pushLast(E v);                 // addLast 

public E popFirst();  // removeFirst 

public int size(); 

public boolean isEmpty(); 

                     } 

 

8. Dequeue (all O(1)) 

public interface Dequeue<E> { 

public void pushFirst(E v);   // addFirst 

public void pushLast(E v);                 // addLast 

public E popFirst();  // removeFirst 

public E popLast();  // removeLast 

public int size(); 

public boolean isEmpty(); 

                     } 

How would you implement this using an array? 


