
Migration in Single Chip Multiprocessors
Kelly A. Shaw and William J. Dally

Computer Systems Laboratory, Stanford University�
kashaw, billd � @cva.stanford.edu

Abstract— Global communication costs in future single-chip
multiprocessors will increase linearly with distance. In this pa-
per, we revisit the issues of locality and load balance in order to
take advantage of these new costs. We present a technique which
simultaneously migrates data and threads based on vectors spec-
ifying locality and resource usage. This technique improves per-
formance on applications with distinguishable locality and imbal-
anced resource usage. 64% of the ideal reduction in execution time
was achieved on an application with these traits while no improve-
ment was obtained on a balanced application with little locality.

I. INTRODUCTION

FUTURE technology will produce chips with billions of
transistors, enabling large quantities of logic and memory

to be placed on a single chip. Growing wire delays, however,
make relative communication costs between these resources in-
creasingly expensive. Single chip multiprocessors adapt to this
high communication cost by dividing a chip into a grid of in-
dependently functioning cells connected by a global network.
In the common case (such as a local computation with local
operands), the wire length (i.e. communication distance) is the
size of the node. For the uncommon case (such as a remote
memory reference), communication travels through the global
network. The challenge for these chips is to further reduce
global communication by decreasing communication distance
while still distributing work across the chip.

The issues of locality and load balance on multi-chip mul-
tiprocessors have been thoroughly examined [2][4][6]. Single
chip multiprocessors, however, differ from these previous sys-
tems, prompting a re-examination of these issues. First, the
large numbers of processors on a single chip supply an abun-
dance of computational power. Second, the memory per node
is small compared to previous per-node memory hierarchies, in-
creasing remote data accesses. Third, and most importantly, the
communication cost function differs drastically.

In previous multiprocessor systems, communication costs di-
vided into two types: local or remote. Remote communication
costs far exceeded local communication costs, making differ-
ences in remote access latencies insignificant. In the network
we consider, contention-free communication costs are small
but increase linearly with distance. This new communication
cost function provides flexibility in the placement of data and
threads in relation to one another. Data and threads no longer
need to be co-located in order to have low latency accesses; they
can be on physically close nodes. Data and threads can there-
fore be moved to balance resource demands with only slight
increases in communication latency. Previous techniques for

The authors would like to thank Margaret Martonosi for the many discus-
sions that helped improve this work. This work was supported in part by
DARPA under ARPA order E253 and monitored by the U.S. Army under con-
tract DABT63-96-C.0039. Additional support was provided by DARPA under
contract MDA904-98-C-A933 and the MARCO Interconnect Focus Research
Center. Manuscript submitted: 13 Sept. 2002. Manuscript accepted: 23 Oct.
2002. Final manuscript received: 4 Nov. 2002.

distributing work and improving locality do not take advantage
of this key characteristic.

In this paper, we present a new migration technique for data
and thread migration which takes advantage of the new com-
munication cost function. The approach characterizes the two
competing goals of (i) reducing global communication distance
and (ii) distributing resource demands as vectors which are then
combined to determine a migration direction. This technique
obtains 64% of the ideal reduction in execution time for an
application exhibiting resource demand imbalance and locality
and achieves no improvement on an application that is balanced
and exhibits little locality.

II. RELATED WORK

Previous work in process and data migration has been based
on two key assumptions. First, prior work assumes processor
utilization affects performance more than usage of other re-
sources, and, second, data locality is defined as local or remote.

Processor load balancing techniques in message passing sys-
tems migrate tasks from nodes with high processor load to
neighboring nodes with lower processor load [2][3]. Migra-
tion decisions in these systems ignore the issue of data locality.
Some migration strategies in shared memory multiprocessors,
such as central ready queues [7], also focus solely on processor
load. Others, however, incorporate the benefits of co-located
data into scheduling decisions. These approaches explore the
benefits of not migrating threads whose data is resident in the
local cache [6][8] and/or local memory [1][4]. Research in data
migration focuses on co-locating data with its accessing threads
either by migrating or replicating pages in memory [5][9].

III. A VECTOR MODEL FOR MIGRATION

The conflicting goals of improving locality and distributing
resource demands can be characterized as vectors. An attrac-
tion vector is associated with every object (data or thread) and
designates the dominant direction of the object’s communica-
tion. Moving the object along the direction of the attraction
vector reduces communication latency. Repulsion vectors are
associated with specific physical regions of nodes. A repulsion
vector specifies the direction objects should be pushed towards
to reduce the load on the current node. Combining these two
vectors creates a migration vector which specifies a direction to
move an object along to best satisfy the two competing goals.
A. Where to Migrate?

The choice of migration destinations affects the amount of in-
formation collected to calculate attraction and repulsion vectors
as well as the time to actually migrate. The simplest scheme al-
lows only single-hop migrations between neighboring nodes. In
a two-dimensional chip, objects have the opportunity to move to
any of four immediate neighbors: north, south, east, and west.
B. When to Migrate?

Two parameters that strongly affect the benefits and costs of
migration are (a) the time to make each migration decision and



Thread
 Data


(a)
 (b)
 (c)
 (d)


Fig. 1. a-d show the effects of data and thread migration

(b) how frequently resource usage information is exchanged.
Longer decision times result in fewer migrations. In this study,
we assume each migration decision takes 100 cycles. Frequent
state collection prevents problems with stale information but
increases network demands. We have chosen to exchange in-
formation every 10,000 cycles. Threads are reconsidered for
migration after every exchange of state information. Nodes re-
consider resident data in a round-robin fashion.
C. How to Migrate?

The attraction vector is calculated based on an object’s com-
munication patterns. We keep track of every communication
in each direction. Opposing directions cancel out, allowing a
single counter to be used per dimension. Because communica-
tions from and to the same row or column as the object’s loca-
tion discourage migration away from the current location, row
and column statistics are collected and then used to reduce the
attraction vector’s magnitudes.

The repulsion vector is calculated for each region of nodes
formed by a node and its four neighbors. Neighbors exchange
load information for memory, communication, and processor
resources to calculate repulsion vectors. Resources exert pres-
sure away from themselves only if they exceed some usage
threshold. For memory and communication, the threshold is
90% of capacity. A processor is considered overloaded if it
contains more threads than the region’s average. The complete
repulsion vector is calculated by adding together the repulsion
vectors for each resource and normalizing the result.

Finally, the migration vector is created by combining the at-
traction and repulsion vectors. An object is migrated if the mi-
gration vector’s magnitude exceeds the time to migrate. (We
have assumed a fixed migration time of 10 cycles for data; fu-
ture work will incorporate data object size.)
D. Migration Example: Raytrace

To illustrate the benefits of simultaneously migrating threads
and data, we describe the execution of a raytracing application
on a 16 node single chip multiprocessor. A raytracing applica-
tion generates a picture by sending rays of light through a scene
to determine the color of pixels in the final image. Rays inter-
sect with scene geometry, determining pixel color. Calculations
performed by each ray are independent from one another and
vary in complexity depending on the geometry intersected.

To maximize parallelism, a single thread executes the calcu-
lations for a single ray. Figure 1(a) shows an initial configu-
ration for a 4x8 image. Two threads are placed on each node.
Because rays generated for neighboring pixels may access the
same data, threads are placed based on the associated pixel’s
coordinates. Data is randomly distributed because associations
between threads and data are not known a priori. For illustra-
tive purposes, one piece of data and two threads that access that
data are colored black.

In Figure 1(a), moving threads would result in processor load
imbalance. Communication latency, however, can be reduced
by using locality to migrate data. Migrating the black data north

as shown in Figure 1(b) decreases the communication latency
for each of the two black threads’ accesses; both threads benefit
even though the data is co-located with only one thread.

Figure 1(c) shows the application as threads complete, leav-
ing some nodes idle. Thread migration based on resource usage
would move one of the remaining threads to a neighboring idle
node. Blindly migrating the black thread would cause every
black data access to incur an additional hop latency for each
direction traversed. By incorporating communication patterns
into the migration decision instead, the black thread remains at
its current location and the white thread is migrated as shown
in Figure 1(d).

As the example shows, the ability to migrate both data and
threads supports

� migrating data based on locality,
� migrating threads based on resource usage, and
� migrating threads to reduce communication costs.

Although not shown in this example, data migration can also re-
duce contention for memory and communication resources. For
example, data can be migrated away from nodes with high com-
munication demands. Performing both thread and data migra-
tion can therefore achieve better performance than either form
of migration alone.

IV. SYSTEM OVERVIEW
A. Chip Architecture

In 2005, a single chip will hold 64 simple processors, 64 MB
of DRAM, and a global network. We envision a baseline archi-
tecture where resources are organized into an 8x8 grid of nodes,
each comprised of a 64-bit single-issue, in-order processor, 1
MB of DRAM, and a network interface to a mesh network.

In our simulations, processors execute one instruction per cy-
cle, contain a single hardware thread context, and issue non-
blocking memory requests. The combined chip memory acts
as a shared address space accessed through the mesh network.
Only application-defined, global, read-only data may exist on
multiple nodes at any given time. The memory organization
acts similar to a cache where each 64B line has an associated
tag and state bits. While accesses to memory are modeled, di-
rectories and their associated communication are not simulated.

The global network has a linearly increasing cost function
with respect to distance. In the absence of contention, commu-
nication latency is measured in terms of the number of routers
traversed, where the time to traverse a router is equal to a pro-
cessor cycle. Physical channels are 8B wide (1 flit) and are
multiplexed between four virtual channels. Routers route up to
five flits per cycle and can buffer four flits per virtual channel.
Off-chip communication is assumed to take fifty cycles regard-
less of where the request originates.
B. Applications

Table I shows the computation and communication demands
of the two applications studied, excluding beginning and end-
ing serial code. The first application, raytrace, was introduced
in Section III-D; it generates a 128x128 scene from the game
Quake.

The second application, Barnes-Hut, performs an n-body
simulation of galaxies over time. For each timestep, the effect
of all other bodies on a given body’s velocity and position is
calculated. Distant groups of bodies can be treated as single en-
tities, thereby reducing the total work. A single thread performs
each body’s computation. Bodies are distributed randomly and
threads execute at the location of their associated bodies. 1024
bodies are simulated for one timestep.



TABLE I
APPLICATION CHARACTERISTICS FOR PARALLEL CODE SECTION

raytrace barneshut
Threads 16,384 2,048
Instr 136,912,117 194,774,175
Stack Ref 55,409,651 127,344,352
Non-Stack Ref 6,342,147 12,817,321
Accessed Objects 9,745 3,124

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Cycles 

raytrace
barneshut

Synchronization
Network Contention
Memory Stall
Instructions

Fig. 2. Breakdown of baseline application performance

Figure 2 shows the breakdown of cumulative execution time.
Memory stall time represents the improvements possible from
either hiding or reducing communication distance. The network
contention delays depict possible benefits from reorganizing the
placement of threads and data to avoid network hotspots.

V. DATA MIGRATION

Figure 2 suggests that both applications can benefit from re-
ducing communication latencies. Data migration accomplishes
this by reducing communication distance and network con-
tention. It also redistributes memory demands, but that has little
effect on the applications studied here due to their low memory
demands. Because these applications experience little network
contention with their initial placement, we focus on the benefits
accrued from reducing communication distance.

Figure 3 shows the execution time benefits from migrating
data. For comparison, an idealized execution time that assumes
all accesses are local, called all-local, is also shown. Data mi-
gration based on locality reduces raytrace’s execution time by
26% compared to all-local’s 42% reduction. Although all-local
is able to halve the execution time for barneshut, data migration
based on locality increases execution time by 8%.

Data migration improves raytrace’s performance by reducing
communication distance. Data is gradually moved towards ac-
cessing threads, decreasing average communication distance as
shown in Figure 4(a). Figure 4(b) shows that data migration
reduces barneshut’s average communication distance slightly.

Data migration can only reduce communication distance if
data has non-zero attraction vectors and if data can be moved

0

2

4

6

8

C
yc

le
s 

(1
,0

00
,0

00
)

No Mig
Data - Loc
Data - Res
Data - Loc+Res
All-Local

raytrace barneshut
Fig. 3. Effects of data migration on overall execution time

0 20
0

40
0

60
0

80
0

Time (10,000)

0

2

4

6

8

10

H
op

s 

(a) raytrace

0 20
0

40
0

60
0

80
0

Time (10,000)

0

2

4

6

8

10

H
op

s 

(b) barneshut

No Mig
Mig

Fig. 4. Average communication distance with and without data migration

1 51 101
151
201
251
301
351
401
451

Threads 

0.0

0.2

0.4

0.6

0.8

1.0

%
 U

se
d 

D
at

a 
O

bj
ec

ts
 

(a) raytrace

1 51 101
151
201
251
301
351
401
451

Threads 

0.0

0.2

0.4

0.6

0.8

1.0

%
 U

se
d 

D
at

a 
O

bj
ec

ts
 

(b) barneshut
Fig. 5. Histogram of the number of threads accessing each data object.

near its accessing threads. Data accessed by small numbers
of threads are more likely to have non-zero attraction vectors
because thread accesses are less likely to cancel out. Figures
5(a) and 5(b) show that data objects in raytrace are accessed
by small numbers of threads (˜80% accessed by fewer than 50
threads) while those in barneshut are accessed by larger num-
bers of threads (˜40% accessed by more than 200 threads). Be-
cause threads in raytrace are initially placed in order to benefit
from locality between threads, data objects are even more likely
to have non-zero attraction vectors.

The more threads that access a data object, the less likely that
data object can be close to all of them. For example, each node
in barneshut executes 32 threads, meaning the 200 threads that
access a given object must be distributed across at least 7 nodes.
Raytrace does not suffer as much from this limitation because
256 threads execute on each node.

Barneshut’s average communication distance decreases
slightly despite data being pulled in all directions because the
network model is a mesh (versus a torus). Consequently, data
near the chip’s edges moves towards the center of the chip, cre-
ating network contention and increasing execution time. In-
corporating resource usage into migration decisions reduces
this network contention, however, a stronger repulsion force is
needed at the chip’s center to prevent all of the contention.

VI. THREAD MIGRATION

In order to isolate the benefits of thread migration, we
hide remote communication latency by allowing multithread-
ing (eight threads) on each processor. This large amount of
multithreading also allows thread migration to impact perfor-
mance on the applications studied. Figure 6 shows the effect of
thread migration in its various forms on execution time, includ-
ing another idealized metric called perfect. The perfect metric
assumes all-local memory accesses and perfect processor load
balance, where every cycle one instruction is executed for up to
64 threads regardless of actual thread placement.
A. Thread Migration to Reduce Latency

As threads finish, multithreading is unable to hide all remote
communication latencies. Thread migration based on local-
ity should therefore still improve performance by reducing la-
tency. As Figure 6 shows, however, this strategy hurts perfor-
mance, resulting in barneshut running six times slower and ray-
trace almost twice as slow. Certain nodes become overworked
as threads migrate to improve locality. Therefore, the benefits
from improved locality are smaller than those from maintaining
a balanced distribution of threads.
B. Thread Migration to Improve Resource Utilization

The perfect metric suggests that execution times for ray-
trace and barneshut can be reduced by 54% and 35% respec-
tively over baseline execution times, although only 10% of bar-
neshut’s improvement is due to balancing resource demands.



0

5

10
C

yc
le

s 
(1

,0
00

,0
00

)
No Mig
Thread - Loc
Thread - Res
Thread - Loc+Res
All-Local
Perfect

34

raytrace barneshut
Fig. 6. Effects of thread migration on overall execution time

17
0

18
0

19
0

Time (10,000)

0

10

20

30

40

N
od

es
 

(a) raytrace

22
0

23
0

24
0

Time (10,000)

0

5

10

15

N
od

es
 

(b) barneshut

PreMig Hot 
AfterMig Hot 

Fig. 7. Number of hot nodes before and after migration

As shown in Figure 6, thread migration based on resource uti-
lization reduces execution time by 35% compared to the ideal
54% for raytrace but is only able to improve barneshut by 3%.

In order to improve performance with thread migration, re-
source usage must be imbalanced over an interval during which
threads can be migrated. Raytrace becomes imbalanced after
20% of its execution, providing a long period during which
thread migration can improve performance. In contrast, bar-
neshut is imbalanced for only 33% of its execution time which
limits thread migration’s benefits. During these intervals of im-
balance, thread migration affects performance for both applica-
tions by improving processor utilization, although the benefits
for barneshut are small. This higher utilization is achieved by
moving threads off of overutilized nodes as shown in Figures
7(a) and 7(b). The graphs depict the number of hot nodes be-
fore and after thread migration, where a hot node is defined to
be a node whose resource demands exceed the threshold used
in migration decisions. For clarity, only 40,000 cycles of each
application’s imbalanced phase are shown. For both applica-
tions, thread migration reduces the number of hot nodes, mov-
ing work to less utilized nodes.

Raytrace’s larger performance benefits also derive from its
wider variance of imbalance in terms of thread count per node.
For example, one node may be executing seven threads while
its neighbor is idle. In contrast, nodes in barneshut tend to have
fairly even demands; most nodes differ from the average by
one thread. Barneshut’s relatively balanced demands make it
difficult to improve performance through thread migration.
C. Combining Locality and Resource Utilization Demands

Figure 6 also shows the benefits of using both locality and
resource utilization in thread migration decisions. The nega-
tive effects of migrating threads based solely on locality are
restrained by the resource utilization criteria. Barneshut sees
no change in execution time when locality is added to resource
utilization while raytrace receives a slight improvement.

VII. COMBINING DATA AND THREAD MIGRATION

Figure 8 shows the effects of combining both thread and data
migration when both locality and resource utilization criteria
are used. Barneshut is neither hindered nor helped by the com-
bination of the two as it was not significantly helped by either
independently. Raytrace, however, achieves a 35% reduction in
execution time out of a 54% idealized reduction.

0

1

2

3

4

5

C
yc

le
s 

(1
,0

00
,0

00
)

No Mig 
Mig
Perfect

raytrace barneshut
Fig. 8. Benefits of both thread and data migration in comparison to perfect
resource balance and only local memory accesses

VIII. CONCLUSIONS

We introduced a vector approach for data and thread migra-
tion on single chip multiprocessors that takes advantage of these
chips’ new communication cost function. We examined the
effects of thread and data migration separately and simultane-
ously. On raytrace, which has both distinguishable locality and
resource utilization imbalance, the migration technique obtains
64% of the idealized reduction in execution time. Simultane-
ous thread and data migration should be able to improve perfor-
mance on applications that, like raytrace, either have data that
is used by a limited number of threads and/or have threads that
perform varying amounts of work.

Although migration did not improve barneshut’s perfor-
mance, it did not hinder performance. One possible way of
improving performance on applications like barneshut is to im-
prove their locality by restructuring the application. For exam-
ple, by dividing each long-running thread into shorter threads
that each touch a small number of data objects and executing
these smaller threads near the data they touch, it may be possi-
ble to obtain non-zero attraction vectors. These attraction vec-
tors could then be used to reduce communication distances.

Study of this approach on applications with varying degrees
of locality and resource utilization (in particular higher mem-
ory and communication demands) is needed for better insight.
However, initial observations show this method improves per-
formance in applications with locality and resource imbalance.

REFERENCES

[1] R. Chandra, A. Gupta, and J. Hennessy, “Data Locality and Load Bal-
ancing in COOL,” in Proc. of the 4th ACM SIGPLAN Symp. on Princi-
ples and Practice of Parallel Programming, San Diego, CA, pp. 249–259,
May. 1993.

[2] F. C. H. Lin and R. M. Keller, “The Gradient Model Load Balancing
Method,” in IEEE Transactions on Software Engineering, Vol. SE-13, No.
1, pp. 32-38, Jan. 1987.

[3] L. V. Kale, “Comparing the Performance of Two Dynamic Load Distribu-
tion Methods,” in Intl. Conf. on Parallel Processing, University Park, PA,
pp. 8-11, Aug. 1988.

[4] E. Markatos and T. LeBlanc, “Load Balancing vs. Locality Management
in Shared-Memory Multiprocessors,” in Intl. Conference on Parallel Pro-
cessing, St. Charles, Illinois, pp. 258-265, Aug. 1992.

[5] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta,
and J. Hennessy, “Flexible Use of Memory for Replication/Migration in
Cache-Coherent DSM Multiprocessors,” in Proc. of the 25th Intl. Symp.
on Computer Architecture, Barcelona, Spain, pp. 342–355, June. 1998.

[6] M. Squillante and E. Lazowska, “Using Processor-Cache Affinity Infor-
mation in Shared Memory Multiprocessor Scheduling,” Tech. Rep. FR-
35, University of Washington Computer Science Department, Feb. 1990.

[7] A. Tucker and A. Gupta, “Process Control and Scheduling Issues for Mul-
tiprogrammed, Shared Memory Multiprocessors,” in Proc. of the 12th
Symp. on Operating Systems Principles, Litchfield Park, AZ, pp. 159-
166, Dec. 1989.

[8] R. Vaswani and J. Zahorjan, “The Implications of Cache Affinity on Pro-
cessor Scheduling for Multiprogrammed, Shared Memory Multiproces-
sors,” in Proc. of ACM Symp. on Operating Systems Principles, Pacific
Grove, CA, pp. 27-40, Oct. 1991.

[9] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating System
Support for Improving Data Locality on CC-NUMA Compute Servers,”
in Proc. of the 7th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, pp. 279–289, Oct.
1996.


